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Object Detection

(Part 2: CNN-based Algorithms)

Code & Data



https://drive.google.com/drive/folders/10N4AxY6cSJrRj55A3i9op7nkpBkVmh44?usp=drive_link

CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2
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° A-.l/ Object Detection Milestones

4 ) 4 )
Milestones: Traditional Detectors Milestones: CNN based Two-stage Detectors
Viola Jones Detectors, SVM + HOG & DPM RCNN, SPPNet, Faster RCNN, Faster RCNWN,..
\_ J - J
4 ) 4 )
Milestones: CNN based One-stage Detectors Milestones: Transformer for OD
YOLO, 858D, RetinalVet, CornerNet, Center Net,.. DETER, D-DETR, DINO,...
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Classification Pipeline

Get Class Scores
Using Softmax

— > Cat 0.8
+—» Dog 0.1
‘ |, Rhino 0.02
——» Hippo 0.02
\

———» Elephant 0.02
| [—» Mouse 0.04

\ } \ J
Y Y Y }

Fully Connected Layers
For Classification

Conv and Pool Layers
As Feature
Extractors

Feature Maps

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html
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Al e Classification Pipeline

VGGNet

1

Conv and Pool Layers
As Feature Extractors

0.02
0.03
0.02
0.03

Feature Extractor

HOG/SIFT/ /Etc




6 Al)aveErnam  Jdeas for Localization using ConvNets

X1, y1

X2,y2

. |
Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html

Case #1 — Only one object per image

X0, y0

'

Vol

| ‘

Get Bounding boxes
Using L2 loss
(x1,y1, x2, y2)

Human
Car
Dog

Cat
Bicycle
etc

Get Class Scores
Using Softmax

I

Human

Car

v

Dog

Cat

Bicycle

Vol

etc



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html
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(x1,y1) = (200, 250)
(x2,y2) = (600, 400)

I

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html

[[TTTTTTTT]

600

800

Bounding Box Regression Training

x1 | y1 | x2 | y2
Expected | 200 | 250 | 600 | 400 L2 Loss
0 | 0 [800]600]| (200-0)2 | (250-0)2 | (600-800) | (400-600)2 | [ 182500
rediction (200-100)2 | (250-150)2 | (600-700)2 | (400-450)2 || 32500
210| 245 590 405 (200-210)2 | (250-245)2 | (600-590)2 | (400-405)2 250
200 250] 600 200] (200-200)2 | (250-250)2 | (600-600)2 | (400-400)2 0



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html

8| Al ) A VIETNAM About Bounding Boxes

300 300

500 600
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4

Ideas for Localization using ConvNets

Classifier

Get Class scores
Using Softmax
C class scores

BBox Regressor

Get Bounding boxes
—> Using L2 loss
(x1,y1, x2, y2)

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html
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Combining Results

FC Softmax
Person
Boat
0.03-TV TV
Class Conf Bbox coordinates

Person 0.02 380 | 200 | 430 | 400

Boat 0.95 210, 245| 590 405

TV 0.03 700 | 10 | 790 | 100
x1 y1 x2 y2

Person

Boat

TV

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html
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) Convolutional Neural Network’s Limitations

[ Step 1: Input Image [ Step 5: Return Result

I E
i
: l 1 {_—JAT“”“‘é*‘;_ s ) o
1 1 () - | o (o) ) o o
: f : S EEIBIEIEE|EE|B(EIEE|SE|= 33
J Step 2: Construct Image Pyramid J ‘St.ep 4: Appy NMS E ‘ L ‘ “ *
1§ \
S /I | S— — —— — —— | SS— — S— | S—
i I | )
! i
:L Step 3: Run sliding window at each scale of 1 Step 3.3: if min probability test passes, E I
! amid rd class label and b box locati
: image pyr: _reco s label and bounding box location A Conv and Pool Layers
i X As Feature Extractors

Il Step 3.1: For each step of sliding window, [ Step 3.2: Take ROI and pass it through CNN
 for classification

e 0.8

(0 §
Feature Extractor » 0.02

» 0.03 ]
HOG/SIFT/ /Etc - 0.02 |

» 0.03 1

e ] [ [T T T TTT] 0T

We need to focus on object only, not entire image
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o

Image Segmentation

Method Ti- Repea- Re- Detec-
me tability call tion mAP
Objectness|l] (o} 3 J * s 25.0/254
CPMC|4] c 250 - .. - 20.9/30.7
Endres2010[9] E 100 - >k *K 31.2/31.6
Sel.Search[30] ss || 10 | *x * kK *x | 31.7/32.3
Rahtu2011[24] R1 3 . . * 20.6/30.4
Rand.Prim|22] RP 1 * * 30.5/30.9
Bing|6] B 0.2 * kK * . 21.8/22.4
MCG|3] M 30 * * ok K Kok 32.4/32.7
Ranta.2014|25] R4 10 * K . * 30.7/31.3
EdgeBoxes|33] EB || 0.3 | * K * K x *k | 31.8/32.2
: Uniform U 0 > : = 16.6/16.9
Gaussian G 0 s « * 27.3/28.0
SlidingWindow SW 0 * kK . . 20.7/21.5
Superpixels SP 1 * E 2 11.2/11.3

Edge Density Jan Hosang, Rodrigo Benenson, Bernt Schiele, “How good are detection proposals, really?”, 2014



https://arxiv.org/search/cs?searchtype=author&query=Hosang%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Benenson%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Schiele%2C+B
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Edge Boxes & Selective Search

L 5 . F ]
- —atiA il P .
- ) \ ; I A e 7
’_L _\ 1 By W o ‘: }T- =
— I |

Zitnick, C.L., Dollar, P. (2014). Edge Boxes: Locating Object Proposals from
Edges.

How to Apply Edge Boxes / Selective il it ol il
Search for CNN? segmentation




12 Al)aveErnem - Region Proposal Algorithms

Region proposal algorithms identify prospective objects in an image using segmentation. In segmentation, we group adjacent regions
which are similar to each other based on some criteria such as color, texture etc.

RBG Image Segmentation Result

Can we use segmented parts in this image as region proposals? The answer is no and there are two reasons why we cannot do that

1.Most of the actual objects in the original image contain 2 or more segmented parts
2.Region proposals for occluded objects such as the plate covered by the cup or the cup filled with coffee cannot be generated using this
method
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Selective Search

Selective search uses oversegments from Felzenszwalb and Huttenlocher’s method as an initial seed. An oversegmented image looks like this.

Selective Search uses 4 similarity measures based on color, texture, size and shape compatibility.
25%3 = 75-dimensional color descriptor
1. Add all bounding boxes corresponding to segmented parts to the list of =k -
regional proposals SCOlOI‘(ria rj) = ; mln(ci 1 G5 Stewture(ria rj) = I; 7nzn(t§’ t_l;)

2. Group adjacent segments based on similarity
3. Gotostep 1

10x8x3 = 240-dimensional feature descriptor

size(r;) + size(r;)

ssize(riyrj) =1 — size(im)

si;ﬁ(BBij) — size(r;) — .s"i,?,f:(r]-)

size(im)

span(riry) =1—

Final Similarity

S(Tia 7'j) — alscolor(ri: rj) + aQStemture(ria rj) + aSSSize(ri, rj) + aélsfill(ria 7’_7)




16 Al ) AVIETNAM Selective Search

o

Selective search uses oversegments from Felzenszwalb and Huttenlocher’s method as an initial seed. An oversegmented image looks like this.

——1 %" -J‘& N

Breakfast Table: top 200 region proposals

Dogs: top 250 region proposals

1. Add all bounding boxes corresponding to segmented parts to the list of regional proposals
2. Group adjacent segments based on similarity
3. Gotostep 1

https://learnopencv.com/selective-search-for-object-detection-cpp-python/
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def genereate_region_by_selective_search(img_file):

img_ss = cv2.imread(img_file)

ss = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation()

ss.setBaseImage(img_ss)

ss.switchToSelectiveSearchFast()

# "... extract around 2000 region proposals (we use selective search’'s “fast mode” in all experiments)."
rects = ss.process()

print('Found', len(rects), 'boxes...")
for i, rect in (enumerate(rects)):
if i>2000:
break
X, Y, W, h = rect
cv2.rectangle(img_ss, (x, y), (x+w, y+h), (10e, 255, 100), 1)

cv2_imshow(img_ss)
# close image show window

https://learnopencv.com/selective-search-for-object-detection-cpp-python/

Selective Search




CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2
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R-CNN: Regions with CNN features

1 warped region

aeroplane? no.

"> person? yes.

\ :
4| tvmonitor? no.
1 Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Ross Girshick, et al. from UC Berkeley titled “Rich feature hierarchies for accurate object detection and semantic segmentation.”
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Localization CNN f6 fc7
4096 4096

Get Class scores
Using Softmax
256 C class scores

6x6 E

w
@
[0
(@)
=
<
D
w
Q)
fa¥)
Q
(@)
=

6x6x256= Get Bounding boxes,
per class
227x227 (x1,y1,x2,y2)

9216
Rich feature hierarchies for accurate object detection and semantic segmentation - Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik




2 ADZYEEY RCNN - Region proposals with CNNss

Localization CNN fc6 fc7
4096 4096

@t assssssass
WUsingg S0 max
lingtasS¥ddrper class
X256
6x6

6x6x256=
9216

Cropped &
Warped
regions

|2Jeas aAI03|3s

Get Bounding boxes,
per class
(x1,y1,x2, y2)

Rich feature hierarchies for accurate object detection and semantic segmentation - Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik



\)
(\)

Al)AYETRM  RCNN - Region proposals with CNNs

€ e e e m e m e — e — e m e — - — - — = — >

Classical CV ' CNN
‘ ‘ Fine Tune using Log Loss
(Training Only)
fc6 fc7

Stage 1
Get Class scores
= Using SVM
Linear SVM per class

] Get Bounding boxes,
Pre Trained per class
On ImageNet (x1,y1,x2,y2)

2000

Region
Proposals Finetune o
On Region Proposals VoC 07 W/O FT WFT
Alex Net

» Before finetune: 44% pool5 44.2 473
*  After finetune: 54% fc6 46.2 53.1
* Adding bounding box regression: 58% fc7 44.7 54.2

* VGG 66%

Rich feature hierarchies for accurate object detection and semantic segmentation - Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik



23 Al)AYEIRAYY  RCNN - Region proposals with CNN s

| | Fine Tune using Log Loss
Classical CV ' CNN (Training Only)

Stage 2

Stage 1

Get Class scores
Using SVM
Linear SVM per class

Get Bounding boxes,
per class
(x1,y1,x2,y2)

2000 Pre Trained
Region On ImageNet &
Proposals Finetuned * Why don't we need the sliding window & image pyramid?

On Region Proposals

* Didn’t we end up with too many inputs to the localization
network?




24 Al ) AIVIETNAM RCNN - Region proposals with CNNs

Selectivesearch [~ |mage warping

Input image

During first few iteration, Unclear After few more iteration After multiple iteration, well defined
proposed regions and huge proposed regions getting clear proposed regions and precise
number of bounding boxes and few bounding boxes bounding boxes(green boxes)

The CNN used here is pre-
‘ trained on classification
dataset which has ample
training data and has
similar feature to the
domain specific dataset.

2000 proposed regions
bounding boxes are reshaped
to a fixed size input mages

FORWARD PROPAGATION

Class specific probabilities and bounding boxes

BACKWARD PROPAGATION
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RCNN - Region proposals with CNNs

| Apply bounding-box regressors
Step #1: Build Step #2: Step #3: During Bbox reg || SVMs Classify regions with SVMs
object detection Fine-tune inference, run Bb SVM —
dataset with 1 classification | Selective Search OX reg b 4

Selective Search model on dataset on input image

Forward each region
through ConvNet

Bbox reg | | SVMs

ConvNet

ConvNet

Step #4: Make ConvNet

Step #6: Return
final object
detection results

Step #5: Apply
NMS

predictions on
each proposal

using fine-tuned
model

Regions of Interest (Rol)
from a proposal method

1.It consumes a huge amount of time, storage, and computation power.
| 2.It has a complex multi-stage training pipeline(3 stage — Log loss, SVYM, and |
. BBox Regressor’s L2 loss).

r"_""""_""_."""_""T _______________ STttt _ ____________________ , """"""""'i i Class prediction - 4 i
. Why not consider running the CNN just once per image and then find a way to | | _ ] OoNN [ “’ 3 —
 share that computation across the ~2000 proposals? | o | L e faponan
e ' i e "\,ﬁ_' ',‘ [~ Bounding box |

i 2 &.L‘J LA prediction i




CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2
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Histograms of Images - Bins

Codebook
Ptnatie
0-49 o 48
48 5099 | 1 o
100-149| 2| of
150-199| 3 48
| 200-255| 4 48
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Spatial Pyramid Matching

vin
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Bag of Visual Words — K Means Clustering

K Means Clustering

Generate HOG/SIFT Feature Descriptors

i i
1 1
1 1
1 1
1 1
1 1
1 1
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1 1
1 1
_ i
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1 1
1 1
1
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29 Al ) AIVIETNAM Spatial Pyramid Matching

level 0 level 1 level 2
@ ® ®
O +.+ e + e +.+ o + O +.+ e +
<o B o o - b o + .
+. ° 4 @ +. ° | 4 @ +. | 4 @
O +0. + ® o -|-<>. + @ o +<>. + ®
o ] © @
. e . a O < -+ e O
o o ¢ o
® + 4 + s + 4 + > + |4 +
Jol Jol I+l Jel Jol Bl el ol [l
I ” H Lialflo|.|(|0]0 malRe B
[ 0]o a | 0 : S e
x 1/4 x 1/4 X 1/2
S L , J L . J
3 12 48

v

A

63
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Spatial Pyramid Matching

Provide the same features

3x1 =3

8x12
Feature Maps

LITTTTTTTITT

x4 =12 — 12x3 12x12
Feature Maps

Feature Maps

rrrrrrrrrrrerrrreerrrerrerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrTrrTrTTTTTrT

8x8
Feature Maps

< 3x16 =48 >

A

Total features: 3x21

Any Size and Aspect Ratio



Bl Al)ZLET Y Spatial Pyramid Pooling

x25
- ’/
1)(1 Y 5 LA® 1x256
o A
* |dentifying features -
* K-means clustering 5 [TTT]
TTT] * (odebooks ' v 4x256
Ax1 * Histograms ] S
Just Max-Pool _
s I
I : ’ 16x256
16x1 % b
8x8 21x256

Feature Maps 21x1
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_

Spatial Pyramid Pooling

fully-connected layers (fcg, fc;)

t

fixed-length representation

A
'd N
I N - - - - - I I D N 1
& 16x256-d 4><256-d ‘256-d

%/// /

spatial pyram1d pooling layer

feature maps of convs
(arbitrary size)

' convolutional layers
input image




33 Al)avernav  SPPNet = SPP + Overfeat for Classification

1x1x4096 1x1x4096
ILSVRC 2014: ranked #3 in image ‘ ‘

classification 1x1xC

Get Class scores
Using Softmax

X256

|00d 3se7-
OON/XBIV

Feature Maps
245x245

1x1x4xC
Get Bounding boxes
/' Using L2 loss
(x1,y1,x2,y2)

Replace last pooling layer by SPP



@ Al)avErem RCNN — Two stage-based methods

- -,

,_
(@]
w
wn
—
=
(=R
=
>

o
o
=

<<

N—

Get Class scores
Using SVM.
Linear SVM per class

=)
Get Bounding
boxes, per class
2000 Pre Trained Using L2 loss
Region Proposals  On ImageNet ' (x1,y1,x2, y2)
+ Finetuned

On Region Proposals



[l Al SPP — Two stage-based methods

Region Proposals

1. How do you translate ROl proposals
onto the Feature Maps

| | Fine Tune using Log Loss
(Training Only)

Get Class scores
»| i—» Using SVM
Linear SVM per class

Get Bounding boxes,
per class

Using L2 loss
(x1,y1,x2,y2)

100 15B7-

=
@
=
=
)
e

Pre Trained
On ImageNet

[— ]

Region Of Interest Proposals — ROl Proposal 3. How to train the BBox regressor

2. How do you pool the ROI proposals from the Feature Map




Al et Subsampling Ratio

1. How do you translate ROl proposals onto the Feature Maps

1
1
1
1
1
1
I
3x3 Pool 3x3 Pool 2x2 Pool :
Stride =3 _ Stride =3 Stride = 2 !
= . <l : -
2x2 1x1 | |00 -
bx6 ! -

1
‘ ‘ I
E 18x18 Subsampling ratio = 1/18 i
| ]
1

| : Classifier
3x3 Pool 3x3 Pool 2x2 Pool :

Stride =3, Stride =1~ Stride = 2 | Y s
T I
1
6x6 5%5 33 1

: 1. How do you translate ROI proposals onto the Feature Maps

I
1
1
1

—_
oo
>
(0]
w
[
O
(%]
QO
3
=
5.
(@]
—
QO
=
(@]
[l
—_
~
(e))
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AlexNet Subsampling Ratio

\ 55
qz-;_.__::__ 5 13 13 13
- I - i “-h‘\-’ -~ \—\~~ E . \‘\" ' - \—
- i ﬁ ) ¢ E / 1 o
224 S * - -
55 & 13 3 13 3 256 dense dense
224 256
96 o - Max pooling | 1000
Stride of 4 Max pooling Max pooling 4096 4086
P
13x13
- Feature Maps How to solve
\\

id. It is i ibl
Spatial Pyramid Pooling 6x6 grid. Itis impossible

Level 1, Level 2, Level 3
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SPP on Region Proposals

Aspect ratio 3:4

43x58 - Feature Map

Three level in Practice - {6x6, 3x3, 2x2, 1x1}



Al)avereav BBox Regression Training

Higher Layers/
ConvNets

BBox Reg

Voo

Ground Truth

ROl Centre/W/H
dx, dy, dw, dh Xg1 Ygr W, Ng

(x+dx—x)2=0

3. How to train the BBox regressor



Bl Al) SPP — 2 Stage Network - Inference

Region Proposals

2000 Computations
Old: 0.7s; New: 0.9s

\ )

| | Fine Tune using Log Loss
Just 1 computation (Training Only)

Old: 9s; New: 0.3s
Get Class scores
»| i—» Using SVM
Linear SVM per class

Get Bounding boxes,
per class
E—) Using L2 loss

(x1,y1,x2,y2)

DIN/XIY

Pre Trained
On ImageNet

ILSVRC 2014: ranked #2 in object detection



i Al)AYERY  Speed-up: SPP vs RCNN=>Fast RCNN

_-\.-/'

. ~ Complex SPP (I-sc) SPP (5-sc) R-CNN
Basic Shapes h . @ZF35)  (@ZF5)  (Alex5)
S apes i FC+ pools 43.0 49 42
: SOft feg 425 448 M
FY ; 3 Stage to 1 Stage fitfce 523 37 53.1
o, ' max fitfes 545 55.2 54.2
Q : . : ftfcy bb 58.0 59.2 585
T : Fine Tune using Log conv time (GPU) | 00535 02935 8.96s
SOt 10y e (s nd ] Loss (Frairing-Only) fc time (GPU) 0.089s 0089  0.07s
i + Softmax for _ totjl lim_e‘ ((lzgi)\ 0.142s 0.382s  9.03s
fixed-length representation ! Classification speedup'(vs, RCNN) | 64 24x -
—— _—A__-__ I Table 9: Detection results (mAP) on Pascal VOC 2007.
- N Get Class scores ft” and “bb” denote fine-tuning and bounding box

regression.

Using S
Linear SVM per class

spatml pyramid
pooling layer

feature maps of convs Get Bounding boxes,

per class
Using E2tess
<.onvoluuondl layers Smooth L1 loss
mput image (X, y, h, w)

if |]a-b|<1, (a-b)%/2
else, |a-b| - 1/2



a2 Al AT Fast R-CNN

_____________________________________________________________________________________________________________________________

Outputs: bbox
softmax regressor i

____________________________________________________________________________________________

Class Bounding box
prediction prediction

2o Rol

__Rol \
§—|=projection’

conv

Rol feature |
vector For each Rol i

Selective search

"

New terminology

_____________________________________________________________________________________________

Fast R-CNN, which was developed a year later after R-CNN, solves these issues very efficiently and is about 146 times faster than the R-CNN during the test time.
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Sub-Sampling Ratio & Roi Projection

(340,450)

s ROI
Pooling

(21,28)

¢
ROI Proposal Feature Maps

The idea of ROI projection is that we get the coordinates of the bounding box from the ROl proposal and we need to project them onto the feature maps by projecting the ROI proposal
with respect to the subsampling ratio.



CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2




45, Al ) ALYVIETNAM RCNN -> SPPNet -> Fast RCNN

, Complex
Basic Shapes > sh P .
apes | c
- P  Soft 3 Stage to 1 Stage
0[] ' max
, ey Fine T ing L
. ine Tune using Log
fully-conncctci layers (fcg, fc7) i — Loss (Fraining-Only)
: + Softmax for
fixed-length representation i Classification
" !
4 SE— 3 Get Class sgores
e e - - spatial pyramid || Using S

pooling layer Linear SVMI per class

feature maps of convs Get Bounding boxes,

per class
Using E2tess
' convolutional layers Smooth L1 loss
input image (X, Y, h, W)

if |[a-b|<1, (a-b)%/2
else, |a-b| -1/2



Al RCNN -> SPPNet -> Fast RCNN

Fine Tune using Log
Loss + Softmax for
Classification

Get Bounding boxes,
per class

Using Smooth L1 loss

(x,y, h, w)

5
D
Q%
\m
U < =
o Q3
Sof
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o

fully-connected layers (fcs, fc7)

t

fixed-length representation
I . - - - - - - I
A

ROI
Projection

7x7

Fine Tune
using Cross
Entropy and
softmax for

classification

v Bounding
Boxes
— —» calculated
from smooth
L1 Loss
Pretrained

on ImageNet Py

feature maps of convs

100d 10y

f convolutional layers

input image

________________________________________________________________________________________ 1 (Speedup) 1x 8.8x
Test time perimage 47 seconds 0.32 seconds
So why don’t we reuse those same CNN results for region proposals instead of running a separate selective
, 5 (Speedup) 1x 146x
search algorithm’ BT S S
with Selective Search '

(Speedup) 1x 25x



CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2
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| Al)RLEN Criteria for replacing SS

— > 9
Q 5 D
Q2 =

= 9
S D 3
S © g

< 2000 Region Proposals
As fast as SS or better

As Accurate as SS or better

Should be able to propose Overlapping ROIs with different Aspect Ratios and Scale

Fine Tune using Log Loss + Softmax for
Classification

Get Bounding boxes, per class
Using Smooth L1 loss

(x,y, h,w)
66~ 1 ;/ ' | ' 1 - 66
4 / =—e== Se|. Search (SS)
63-! / |=e= S5 (2k) + Rand Dense |- 63
| A SS replace Dense
61--— L .| { 45k Dense Softmax |-g1—
! O 45k Dense SVM §
5 oy e Ce—
3 g I ol wewws S5 Avg. Recall &
56- ! IS -56 ©
LY B g
53z el 2T -53<C
51- -51
49- : : R O.49
1o3 10*
Number of object proposals
Figure 3. VOCO7 test mAP and AR for various proposal schemes.

Role of Region Proposals
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Overlapping ROIs

Anchor Boxes Solution ¥ |

From the image, we see a lot of objects overlapping each other. We see a car, a bicycle, a person holding
a television, and a dog inside this television. The selective search could solve this problem but we end up
with a huge number of ROIs. We need to think of an idea that efficiently solves this.



51 Al ) AIVIETNAM Anchor Boxes

Ooc3
4
: [
D LAY | I |
3
Aspect Ratios >
2:1 11 12 — e e
o . Any object in the image can be detected using boxes of 3 different scales
- and 3 different aspect ratios.
Sale | (LJ_1 VT FF== !
|
| This could be a technique that can be used to solve our purpose of
. replacing the region proposal.
2 9 AnchorBoxes oo |




52 Al ) AIVIETNA Solutions for Replace Region Proposals

m.edu.vn

Removing Selective Search and applying a sliding window on top of the Feature Maps. But with this, we end detecting mostly objects of a single scale.

Dense Sampling

Fine Tune using Log Loss + Softmax for
Classification

Get Bounding boxes, per class

Using Smooth L1 loss

(X, y, h,w)

|—3_>3
Q o D
0w x =
= 3
_U<5'
o D 3
S @ 5

Fast RCNN + Sliding Window
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To take care of multiple scales, we have to use Image Pyramids at the input. But using images of 5 different scales (by which almost every object can be detected) makes the network 4
times slower.

Classification

) Get Bounding boxes,
Q > per class

‘ ? Using Smooth L1 loss
Image Pyramid

(x, ¥, w, h)

Dense Sampling
Fine Tune using Log
Loss + Softmax for

|ood 1se7-
DON/X3V
pauleslald

Fast RCNN + Sliding Window + Image Pyramid
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Another option is to use sliding windows of different sizes (9, as shown above) on the Feature Map. This concept is called the Feature Pyramid. =
This involves the use of sliding windows of 9 different sizes on top of the feature maps. ||, I,

Fast RCNN + Feature Pyramid

Fine Tune using Log Loss + Softmax for
Classification

Get Bounding boxes, per class

Using Smooth L1 loss

(x,y, h,w)

Dense Sampling with
feature pyramid

(800x600)

9N/ XN
paule.iald

* Atleast 40x60x9 =~ 20,000 proposals -> time consuming.
* Backpropagating through those many proposals is difficult/time consuming



edu.vn

Bl Al) S Fast RCNN + Neural Network

OverFeat [-Classifier-NMS]

Fine Tune using Log
Loss + Softmax for
Classification

|00d 3se7-
DON/XAIY
p=auiellald

Get Bounding boxes,
per class
Using Smooth L1 loss

(x,y, h, w)

Simple CNN BBox Regressor

Fine Tune using Log
Loss + Softmax for
Classification

|00d 3se7-
DON/X3Y
p=auiellald

Get Bounding boxes,
per class
Using Smooth L1 loss

(x,y, h, w)
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7 Overfeat Classification

Fully Connected layer implemented as a convolution layer

Conv Output Feature Map Outputs Filters Final output
+ Feature Map For C Classes
Pool Layers From Conv+Pool

X256 256*4096 4096* 4096+ xC
x4096 4096 x4096 C ’_|
o5 1x1 1x1 1x1 1x1 >
245x245 . E—
First 5 Layers of Feature Map N layer Conv — M Feature Maps

AlexNet (Modified) 5x5

) T T
ololololololole| [slolololslololo| |slolololelolo|o

clololololole] [elolololololole] |elolololelalole
I Il‘w

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks — Sermanet et al

0,0 of of of o 0

See demo here - http://cs231n.github.io/assets/conv-demo/index.html|
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Consider using a simple CNN BBox regressor in place of Selective Search to get the approximate region proposals of the image which could further be fed to the underlying Fast R-
CNN architecture. This is the core idea behind Faster R-CNN.

RPN: Region Proposal Network

RPN

Fine Tune
using Cross
Entropy and
softmax for

classification

100d 10

Bounding
Boxes
—p —» calculated
from smooth
L1 Loss

Pretrained (x1,y1,W,H)
on ImageNet
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—/ @aivietnam.edu.vn

How can we do it?

Fast RCNN + RPN

\

|ood 1se7-
DON/X3V
pauleJlald

RPN

|00d 3se7-
DON/X3IY
p=uilellald

< 2000 Region Proposals
As fast as SS or better

As Accurate as SS or better

Fine Tune using Log
Loss + Softmax for
Classification

Get Bounding boxes,
per class

Using Smooth L1 loss
(X, Y, hr W)




59 Al )avernav  Review: Ideas for Localization using ConvNets

Absolute Bounding Box Regression 10
Case #1 — Only one object per image L [ > Human
| Car
| Dog
IS Cat
800,0 || > Bicycle
| _— etc
Get Class Scores
— —> | |:|_' Using Softmax
0, 600 —> Human
—» Car
X1, yl w —> Dog
Get Bounding boxes
" Using L2 loss -
X2,y2 OO (Xll yll XZ) y2) —» Cat
Y —> Bicycle
- etc

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html



http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html

Al ) tmmton BBox Regression - Relative

Relative Bounding Box Regression

0,0 ‘

v

Higher Layers/
ConvNets

BBox Reg

dx, dy, dh, dw
Reference Box XY, h, w
ROl reference Bbox deltas Predicted Expected

X y hl  w| dx| dy| dhl dw X y h w X y h w
160 240| 150| 150 18| -22| -30|-125 178 218 1201 25 180 220 120 30




Al)AvENM  Sliding Window as Reference Box

Higher Layers/
ConvNets

BBox Reg

vy

dx, dy, dw, dh

Reference Box X, ¥, w, h




etnam.edu

sz Al)avervav - Sliding Window as Reference Box

0,0

Higher Layers/
ConvNets

BBox Reg

voyov

dx, dy, dw, dh

[

Reference X, ¥, W, h
Box




83, Al)AYENMY  Sliding Window as Reference Box

X
0,0
s
. BBox Reg
N
BBox Re
v

BBox Reg

Reference X, ¥, W, h
Box
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o8 Al ) Sliding Window as Reference Box

BBox Reg 1:1 n

X, ¥, w, h




Al ) i Square ROI to Rectangular Proposal

Higher Layers/
ConvNets

BBox Reg 2:1
ROI Centre/W/H Ground Truth
Xy, W, h dx, dy, dw, dh Xy, w, h
Tall Box Centre/W/H
X, Y, W, h
ROl reference Bbox deltas Predicted Expected

X y hf w| dx dy| dhl dw X y h w X y h w
1600 2400 120 65 18l -22[ -10] -32| 1vg| 218 1200 33| 180 220 120 30




Al)AVETNAM - Square ROI to Rectangular Proposal

X
Higher Layers/
ConvNets

BBox Reg 1:1
ROI Centre/W/H L l l l Ground Truth
X, ¥, W, h dx, dy, dw, dh X, ¥, W, h

Square Box Centre/W/H

X, ¥, W, h




Al ) i Square ROI to Rectangular Proposal

Higher Layers/
ConvNets

BBox Reg 1:2
ROI Centre/W/H L l l l Ground Truth
X, ¥, W, h dx, dy, dw, dh X, ¥, W, h

Wide Box Centre/W/H

X, ¥, W, h




Al)AvETNAY Multiple BBox Reg using Reference Boxes

@aivietnam.edu.vn

. 7T This is different from Feature Pyramid
A : BBox Reg 1:1 n
T g These boxes are called Anchor Boxes

o~ _ BBox Reg 1:2  hl I
. ‘:E 4 ' BBox Reg 2:1

BBox Reg
BBox Reg >
BBox Reg

BBox Reg
BBox Reg
BBox Reg

v




@

Al VIET NAM

@aivietnam.edu.vn

Bigger Objects?

SW Centre/W/H

X, ¥, W, h

Higher Layers/

ConvNets

BBox Reg

vy

dx, dy, dw, dh

Tall Box Centre/W/H

X, ¥, W, h

Ground Truth

X, ¥, W, h
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Al Al VIET NAM

@aivietnam.edu.vn

Bigger Objects?

BBox Reg 1:1

Re#efen:ee-Be*

X, ¥, W, h




Al ) AIVIET NAM Multiple BBox Reg using Anchor Boxes
) e p g

1:1,1:2.2:1

L? < :7 BBox Reg n
- : GO [ 1 128sq
- E g, v BBox Reg |:|

BBox Reg
BBox Reg > 256sq
BBox Reg

BBox Reg
BBox Reg
BBox Reg

512sq

v




2 Al VT Fast RCNN + RPN

RPN

< 2000 Region Proposals

As fast as SS or better

As Accurate as SS or better

|00d 1se7-
DON/X3Y
pauiellald

Fine Tune using Log
Loss + Softmax for
Classification

|ood 1se7-
DON/X3V
pauleJlald

Get Bounding boxes,
per class

Using Smooth L1 loss
(X, Y, h, W)




Al)SYENM  How to reduce number of proposals?

Higher Layers/

ConvNets

y

v

vy oy
dx, dy, dw, dh l l

FG BG




) Al)AYEYY  Faster RCNN — Training Anchor Boxes - Labelling

BBox Reg 1:1
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Fast RCNN + RPN

RPN

|00d 1se7-
DON/X3Y
pauiellald

x
(s}

FG/BG As fast as SS or better

As Accurate as SS or better

v
-

Fine Tune using Log
Loss + Softmax for
Classification

s>
2282
-+ X 5
\m
o<
OQPD
°cnl

Get Bounding boxes,
per class

Using Smooth L1 loss
(X, Y, h, W)




Al ) AVETNAM Faster RCNN — Training Anchor Boxes - Labelling

BBox Reg 1:1
BBox Reg 1:2
BBox Reg 2:1




il Al) SV Fast RCNN + RPN = Faster RCNN

Different Image Sizes? X9 RPN
1;‘1:>| - e
. % g 3d -0 | As fast as SS or better ?
% E S : r Dense Sampling | As Accurate as SS or better ?
o o 3 u
S ol /1 [ﬁ]

Fine Tune using Log
Loss + Softmax for
Classification

|ood 1se7-
DON/X3V
pauileJlaid

Get Bounding boxes,
per class

Using Smooth L1 loss
(Xl yl hl W)

Unchanged — Fast RCNN




Al Faster & Accurate than SS?

D Hae it Timeinms -~~~ >
model | system | conv proposal region-wise | total | rate MAP
VGG | (S5 Fast RCNN 146 1510 174 1830 | 05fps g6
VGG RPN + Fast R-CNN 141 10 47 198 5fps  69.9

3x3 window m::mn I o _? mqm:'/
/V Classifior
> > —> 0 .
\‘ Regressar
|- =
Pretrained
on ImageNet RPN 9x

Fine Tune
using Cross
Entropy and
softmax for
classification

700d 10d

Bounding
Boxes
— —p calculated
from smooth
L1 Loss

Pretrained (x1,y1,W,H)
on ImageNet




79 Al ) AIVIETNAM Faster RCNN - Training

x9 m . .
1>< 1_ . g 1. Train RPN using ConvNet1
] o X1= ©
558 -»I [ Fe/BG % 2. Train Fast-RCNN using
LS9 G > ConvNet2 & RPN Proposals
O @ 3 " .
o3l r - = 3. Fine-Tune RPN using ConvNet2
0 o
N @ 4. Fine-Tune Fast-RCNN using
<
lelf’I I]" E: I:l mp— Y ConvNet2 & new RPN Proposals

Fine Tune using Log
Loss + Softmax for
Classification

|00d 3se7-
DON/X3Y
pauiellald

Get Bounding boxes,
per class

Using Smooth L1 loss
(X, Y, h, W)

R

)

I
Il
0]

0]

L

Fast RCNN




80 Al )AIVIETNAM Object Detection Milestones

4 ) 4 )
Milestones: Traditional Detectors Milestones: CNN based Two-stage Detectors
Viola Jones Detectors, SVM + HOG & DPM RCNN, SPPNet, Faster RCNN, Faster RCNWN,..
\_ J - J
4 ) 4 )
Milestones: CNN based One-stage Detectors Milestones: Transformer for OD
YOLO, 85D, RetinalNet, CornerNet, Center Net,.. DETER, D-DETR, DINO,...




CNN Limitations

Region Based Convolutional Neural Networks

Spatial Pyramid Pooling

Fast R-CNN

Faster RCNN

YOLOv1-v2
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g One-stage vs. Two-stage Detectors

Input Image Feature map

@
- e e D> car
CIasmgcatlon @ -5 Person

@ Re-localization \® -» Background
Output

(a) Two-stage Detector * _

Input Image
:;nzlﬁ_ Classification li1, j21 - Background

* - - | & li2,j1]1 = Person

—:H:::H_ Re-localization li2, j21 - Background
(b) One-stage Detector D Neural Network |:| Object Proposal

Feature
Extraction

Region
Proposal

li1,j1] - car

Feature
Extraction




83 Al ) Al VIETNAM Object Detection Milestones

R-CNN —» OverFeat — MultiBox — SPP-Net — MR-CNN — DeepBox — AttentionNet —

YOLO Object Detection Models
Ti me'ine 201311 ICLR' 14 CVPR' 14 ECOV 14 Iccv' 15 o 15 GOV 15
Fast R-CNN — DeepProposal - RPN — Faster R-CNN — YOLO v1— G-CNN — AZNet —
1Cov 15 o' 15 NIPS 15 NIPS’ 15 CVPR" 16 CVPR" 16 CVPR' 16
Scaled YOLOv4
DAMO YOLO : —
PP-YOLO PP-YOLOE Inside-OutsideNet(ION) — HyperNet —» OHEM — CRAFT — MultiPathNet(MPN) — SSP
YOLOvVS YOLOV7 CVPR' 16 CVPR’ 16 CVPR' 16 CVPR’ 16 BMVC’ 16 ECCV' 16
YOLO 9000 (v2) ARG AOLOS @ GBDNet — CPF —» MS-CNN — R-FCN —» PVANET — DeeplD-Net— NoC — DSSD— TDM —
ECCV" 16 ECCV 16 ECCV' 16 NIPS’ 16 NIPSW' 16 PAMI" 16 TPAMI' 16 Andv’ 17 CVPR" 17
Feature P id Net(FPN) — YOLO v2 — RON-—» DCN — DeNet — CoupleNet — RetinaNet —
;gll:gﬁ YOLOVB RS y:?::'“1 7 € ( ) CVPR 17 CVPR' 17 oo 17 e 17 Iccv’ 17 eV 17
YOLOS
PP-YOLOv2 Mask R-CNN— DSOD —+ SMN — YOLOv3 — SIN — STDN — RefineDet — RFBNet — -
covr 17 cov 17 oV 17 Arxiv’ 18 CVPR' 18 CVPR' 18 CVPR' 18 ECCV 18

Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524



B4 Al ) AIVET NV Why Study YOLO?

__________________________________________________________________________________________________________________________________________________________________

' YOLO is an abbreviation for the term ‘You Only Look Once’. This is an algorithm that detects and recognizes various objects in a picture
- (in real-time). Object detection in YOLO is done as a regression problem and provides the class probabilities of the detected images.

YOLO algorithm employs convolutional neural networks (CNN) to detect objects in real-time. As the name suggests, the algorithm requires
 only a single forward propagation through a neural network to detect objects. |

" Speed: This algorithm improves the speed of detection because it can predict objects in real-time.

&7 High accuracy: YOLO is a predictive technique that provides accurate results with minimal background errors.

A Learning capabilities: The algorithm has excellent learning capabilities that enable it to learn the representations of objects and
apply them in object detection.

For small datasets and limited computational power, YOLOv8 might be a better choice as it has been optimized for speed and accuracy. However, if you have more significant
datasets and more complex object detection tasks, DETR could be a better fit due to its ability to handle object detection without pre-defined anchor boxes



85 Al ) A VIETNAM YOLO: Motivations

In 2015, Joseph Redmon (University of Washington) developed YOLO. One of his co-authors, Ross Girshick (Microsoft Research), published a
paper for Faster R-CNN around the same time. They probably shared common ideas in computer vision research as there are some similarities
between YOLO and Faster R-CNN. For example, both models apply convolutional layers on input images to generate feature maps. However,
Faster R-CNN uses a two-stage object detection pipeline, while YOLO has no separate region proposal step and is much faster than Faster R-

CNN.

softmax
Class

BBox

1 LB
-

Rol feature
vector

Faster R-CNN pipeline

Class
Image —»
BBox

YOLO pipeline




86 Al ) AIVIETNAM YOLQO: Motivations

In 2015, Joseph Redmon (University of Washington) developed YOLO. One of his co-authors, Ross Girshick (Microsoft Research), published a
paper for Faster R-CNN around the same time. They probably shared common ideas in computer vision research as there are some similarities
between YOLO and Faster R-CNN. For example, both models apply convolutional layers on input images to generate feature maps. However,
Faster R-CNN uses a two-stage object detection pipeline, while YOLO has no separate region proposal step and is much faster than Faster R-

CNN.

YOLO has many versions (variants). Joseph Redmon developed the first three versions of YOLO: YOLOv1, v2, and
v3. Then, he quit.

After YOLOv3, different groups of people developed their versions of YOLO:

YOLOv4 by Alexey Bochkovskiy, et al.

YOLOV5 by Ultralytics

YOLOvV6 by Meituan

YOLOX by Zheng Ge et al.

YOLOV7 by Chien-Yao Wang et al. (The same people from YOLOv4)

M Joseph Redmon - Feb 20, 2020 ¥
y @pjreddie - Follow

4 “We shouldn't have to think about the societal impact of our
work because it's hard and other people can do it for us” is
a really bad argument.

ﬁ Roger Grosse @RogerGrosse
Replying to @kevin_zakka and @hardmaru

To be clear, | don't think this is a positive step. Societal
impacts of Al is a tough field, and there are researchers
and organizations that study it professionally. Most
authors do not have expertise in the area and won't do
good enough scholarship to say something meaningful.

) Joseph Redmon
@pjreddie - Follow

| stopped doing CV research because | saw the
impact my work was having. | loved the work but the
military applications and privacy concerns eventually
became impossible to ignore.

€ Roger Grosse @RogerGrosse
Replying to @skoularidou

What's an example of a situation where you think someone
should decide not to submit their paper due to Broader Impacts
reasons?




Al Avervam

v
W

A

Residual blocks
Bounding box regression

Intersection Over Union (10U)

Image

YOLO: Motivations

Faster R-CNN pipeline

Image

Rol feature

softmax

Class

LN
N

BBox

vector

Class

_'-».—II

YOLO pipeline

»
»

BBox
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. -|C1 = Person
S BIC2 = Horse

Single stage regression problem

https://github.com/MLForNerds/YOLO-OBJECT-DETECTION-TUTORIALS
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Steps in YOLO

« Take input image

e Resize to 448x448
e Divide into SxS Grid cells

e S=7 in paper

« Each cell is responsible for
predicting one object

 Which cells are responsible
for person and horse?

64x64 Cell



90 Al ) AIVIETNAM YOLO: Motivations

Steps in YOLO

* Take input image

 Resize to 448x448

* Divide into SxS Grid cells
e S=7 in paper

e Each cell is responsible for
predicting one object

 Which cell is responsible?

 Where Center of object falls
into 64x64 Cell
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Bounding boxes

 Box - Xx,y,w,h

e How are these encoded?

* Relative to Grid cell that the
object Center falls into.

(200,311, 142,250)




Bounding Boxes

g2 Al ) AlVIETNAM

« Center point (x,y): Relative to
anchor that (x,y) falls into.

Ax = (x < x,)/64
(X4, Yo ): the coordinate of left-top point
Ay = (y <)/ 64
« Width/height (w,h): relative to the . TR WY
whole image Y uailEE | | R
Aw = w/448 (200,311,142,250) . ik L1 - N B |
P R e kG S =

Ah = h/448
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C A_ 200-192 _(; ;3_:
S8 = ~ V.

€ i > X 64 :

: |

————— A, _311-256

. (192,256) y=——77— =087

\ :

448 | :

- Aw = w /448 !

:

|

(200,311) Ah = h/448 :

| |

' |
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—/ Daivietnam. e

ample Calculation: G'T/Target Values

: - e 200 — 192 013 |
I A " > =T :
|

: A 311 — 256 o I
— ~ y |

| w =142 Y 64 |
! - :
- A |
|44(\ - A - 142 0 31 :
JEERik S
' % 250 |
| (- |

Ah =" =

: zag "~ 06 |
I i i ,
' I
' l
' |
|




95 Al ) AlVIET NAW YOLO: Label Encoding

* For every Grid cell (Anchor box), we need to create targets/labels

 No Object - All zeros

* Object - Relative values w.r.t grid (A%, 49, AW, Ak,E) (P D2y 4 Pao)
« Classes - one-hot encoding 4, (0.0 0 0 0) CO 0 .. 0)
A, (0 0 0 0 0 (0 O .. 0)
* Ex: (x,y,w,h,c) =(0.9,0.7,0.1,0.1,1.0)
e Classes =(1.0,0,0,...0)-20 values A,; (0.9 07010110 (0 .. 10 ..)
ﬁ14=person

A;> (0.10.8030510 (0 ..20 - )
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v Residual blocks

%7 Bounding box regression

A\ Intersection Over Union (I0U)

S X S X B bounding boxes
confidence = Pr(object) x loU(pred, truth)

Final detections

S xS grid on input

Pr(Class, | object)

Class probability map
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Image Classification Object Localization

|s this a cat or a dog? Where extactly is the cat in the image?

Neural Network Output: Neural Network Output:
Cat =1

_ Cat=1 Bounding box
Mg = Dog=0 J
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Object Localization

_PC_ — 1 -
x| 130
B,
5| |28
[P - 17 B 28
Cy
By 50 c | 82
B, 0
5| |70
Br| |60 -1
C1
c | 70
1 .
L () A B, 0
B, 0
: B
Cy: Cat class w
; : : C,: Dog class By, 0
Where exactly is the cat in the image? 2 C, 0
LG, 0
Neural Network Output: 0

Cat =1 Bounding box i
Dog=0
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X: Train Y: Train
Y S
v NN \I
' 11 g" 50 1
| 11 y 70 |
I 11 B,| |60 |
I 11 Bn| |70 I
1 11 C, 1 1
| 11 e I
| 11 27 L0 1
| 11 | ‘P
: ] Pyl | B,
! I Byl |28 ! S [T - = By
' 1 By| |28 ' om0 R ot dog By
I 11 By 182 | - C,
: : : gl 0 : Input image Lonl\;jleuruon ReLU layer Pooling layer ?I:::; _CZ_
I | 1 S2- - 1 - | Fully connected
layer
1 11 _PC_ 0 |
| 11 B 0 1
| 11 x 1
I I By| |0 I
| 11 By, 0 |
[ 11 By 0 1
\ /1 Ci| o I
\ .1 | ]
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@aivietnam.ed




| Al AIVIET NAV YOLO: Motivations

o

B _0_ -1 T

L 0.32

By

B,| |V 0.02

Bl 10 3.0

¢,

.C, 0 2.0
0 0
-0 L1

0.05
0.3
2.0
1.3

p—

L (0 A (1v1) C;: Dog class
C5: Human class
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il

How the labels look like?

(0,0)

Each output and label will be relative to the cell!

Each bounding box for each cell will have:
[x,y,w,h] = [0.95, 0.55, 0.5, 1.0]

Bounding Box

—

I-abelcell = [Ch CZ’ ey CZO’ pc1 X, yr W, h]

\ }
|
20 classes \

Probability that there is an object (1 or 0)
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@aivietnam.edu.vn

How the prediction look like?

g

Bounding Box 16 vectors

\
( |

Prediction ;= [C, €5, +++y Cogy Pets X Yy W, D]

Multiple
bounding

\ J
Y boxes
20 classes \

Probability that there is an object (1 or 0)
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Non Maximum Suppression

Algorithm 1 Non-Max Suppression
procedure NMS(B,c)

Initiali t
Bnms — m tialize empty se
fOl‘ bi E B dO =2 Iterate over all the boxes
‘Take boolean variable and set it as false. This variable indicates whether b(i)

I
2
3
4 discard < False swuavereptor discardes
5: for bj € B do  startanother toop to compare with b
6
7
8
9

if Same(bz, bj) > Anms then If both boxes having same 10U
if score(c, b;) > score(c, b;) then

Compare the scores. If score of b(i) is less than that

discard <+ True of b(j), b() should be discarded, so set the flag to

if not discard then Omb(i)kT:::;pu!dwkhall other boxes and still the

discarded flag is False, then b(i) should be considered. So
LearnOpenCV.com 10: Bnms C o B'n'ms U b’i add it to the final list

1 1 . retum Bn s Do the same procedure for remaining boxes and return the final list

What if one grid cell has center of two objects
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U The input image is divided into an SxS grid (S=7)

QO Each grid cell predicts B bounding boxes (B=2) and confidence scores for those boxes
U Each bounding box consists of 5 predictions: x, y, w, h, and confidence

U Each grid cell also predicts conditional class probabilities, P(Class i | Object). (Total number of classes=20)

7
2 g 3,18 z
N4 - - 2 T2 Bl F & ol = §
cxywhcxywh§§a§§§e§§§§§§§g§§§g§
@ @ @ 2 -
1st - 5th 6th - 10th 11th - 30th
box1 box 2 conditional class probabilities Box #1 Box #2  Class Probabilities

score 1 score 2

The output size : 7%X7%(2%5+20)=1470
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- e Output Parsing

(Axlr Aylr AW1; Ahl) ,C1 (sz' AyZ' AWZ; Ahz ) ,C2

ey = A, X 64+ %, X, = Ax,; X 64 + x,
y1 = Ay, X64+y, Y2 = 8y, X 64+,
i w; = Aw; X 448 Wy = Aw; X 448
- hy = A, X 448 | ha = Ah; X 448
'. - N

object class | = argmax(py, Py, ..., P20)

Consider the box with highest
confidence score per each grid

class confidence ¢, =c¢; Xp C,=Cy Xp

p = max(p;, P2, --» P20)
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S X S X Bbounding boxes
confidence = Pr(object) x loU(pred, truth)

Bounding boxes + confidence

TRER, -

P i
U1/
. . L1 Sal A - -
S xS grid on input W al Final detections

Pr(Class, | object)

Class probability map
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YOLO-v1 Architecture

3
448 :ﬁg 28 3@
3 L 7N ) 7 7
12 B\ 3 3 g >< ><
28 14
| | 7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers  Conn. Layer  Conn. Layer
7x7x64-5-2 3x3x192 1x1x128 1x1x256 1x1x512 3x3x1024
Maxpool Layer  Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s-2 2x2-5-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer  Maxpool Layer
2x2-s2 2x2-5-2
fully .
fully x B times x C times
...................... connected connecte e b
r N N
T ME D | (X, y,w, h, obj score) | class probability
mage (x
Imag DarkNet |
\ Architecture ™ length: 5B+C
LU 7x7x1024 4096 7x7x30
448x448x3

The YOLO pipeline is simple.

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1 of the paper

1. It resizes input images to 448 x 448.
2. It runs a single convolutional network on the input images.

3. It thresholds the resulting detections by the model’s confidence.

The YOLO is a network was “/nspired by” GoogleNet. It has 24 _convolutional layers working for feature extractors and 2 dense layers for doing the predictions. This
architecture works upon is called Darknet. There is a fast version of YOLO called “Tiny-YOLO” which only has 9 convolution layers



https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43022.pdf
https://en.wikipedia.org/wiki/Convolutional_neural_network
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YOLO-v1 Architecture

9 Vi
Type Size Filters  Stride Output
Conv. 7x7x3 64 2 224 x 224 x 64 |
max pool 2x2 112 x 112 x 64
Conv. 3x3x064 192 1 112 x 112 x 192
Flatten the last conv map 7x7x1024 to 50176 feature vector
max pool 2x2 56 x 56 x 192 -
Conv. 1x1x192 128 1 56 x 56 x 128 * Pass through 2 fully connected layers
Conv. 3x3x128 256 1 56 x 56 x 256 ° Output - 1470 feature vector
Conv. 1x1x256 256 1 56 x 56 x 256
Boaw. Balisctts BB 4 B x 86wt » Reshape 1470 vector to 7x7x30 feature map
max pool 2x2 28 x 28 x 512}
Conv. 1x1x512 256 1 28 x 28 x 256
P -.om X1X X X 4 x 2 — 8
Conv. 3x3x256 512 1 28 x 28 x 512 . a ) O ”
Conv. 1x1x512 512 1 28 x 28 x 512 ’V -OR il 07
V ; N4 > U
Conv. 3x3x512 1024 1 28 x 28 x1024 (— 2 7Iﬂ = | * OO 2| = ]
max pool  2x2 14 x 14 x1024 L flatten : O 'O«, : reshape 5’
- 7 V50176 —-O ;. Via70
,,| Conv. 1x1x1024 512 1 14 x 14 x512 | 5 o o _ 4 J W
7| Comv. 3x3x512 1024 1 14 x 14 x1024 Wso176
Conv. 3x3x1024 1024 1 14 x 14 x1024
Conv. 3x3x1024 1024 2 7 x 7 x1024 [
Conv. 3x3x1024 1024 1 7 x 7 x1024
Conv. 3x3x1024 1024 1 7 x 7 x1024

6+8+2+4+4=24
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A Training Process

randomly
~—— ) selection

s | = label
encoding
Dataset: Pascal VOC - 20 classes 1
* Network pretrained on Imagenet at 224x224 back ) PP loss
» Actual training on 448x448 on VOC dataset propagation computation
update t
z . 30
YOLO vl predicted
Con. Network i I map
i «—>

7
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L.oss Function

448

* Loss L is the sum of losses over all grid
cells SxS.

e Put more importance on grid cells that
contain objects

* Decrease the importance of grid cells
having no objects 448

* EX: 2 object cells, 47 no-object cells

SZ
no_obj
+* Ano_obj > li ]X Li,no_obj
i=1
0.5 |
12 = 1 if ith grid 17°-°% = 1 if ith grid
is object anchor is no-object anchor
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o Al Loss for object cells

Loss = Confidence loss + classification loss + Box Regression loss
» Put more weightage on box parameters

. box conf , rcls
Li,obj —[Acoord }( Li,obj + Li,obj + Li.Obi

= 5 )z
/

box = (Bx} — A%)” + (&y; — A9;)°
+ (VBw] - V&R + (VAR - VBR:)

* (AR;, AY;, Aw;, h;): ground-truth box

* (Ax;,Ay;,Aw;, Ah;): responsible predicted box that

has the largest IoU with ground-truth box
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- Loss for object cells

Loss = Confidence loss + classification loss + Box Regression loss
» Put more weightage on box parameters

_ box conf  rcls
Li,obj —[Acoord}( i,obj + Li,obj + Li,Ob]'

=5
— T AT

20

Y




L1 A | AIVIETNAM

Bl ) e Loss for object cells

Loss = Confidence loss + classification loss + Box Regression loss
» Put more weightage on box parameters

. box conf , rcls
Li,obj —[Acoord }( Li,ob] + Ll ,0bj + L ,0bj

ﬁi,14

+ -+ (0.05 — 0.0)?

> 5>«

IIIIIIIIIIIIIIIIIIIlzo

L(l:lgb] (pi1— ﬁi,1)2 + - +(pi1a — ﬁi,14)2

+e (Pi,zo - ﬁi,zo)z

Pi14=person = 1.0
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s2 B
. Acoor ILObJ ( i — "i)z +( g — »i)2
Loss Function RegreSSlOn g Z_(:)Jz: [ r - Y Y ]
loss &2 g .
+ Awora 3 > 13 [(\/w— — Vi) + (\/h_i— \/;T) ]
1=0 5=0

Confidence T Z Z 1 ( )

§=0j—0
( —— loss s2 B
noo 2
i%@i”ﬁi g + dy 3 315 (0 - 61)
man s 1=0j=
Classification| &% .
L= Lloc I Eobj + Ecls ’ ’ + Z ]l'zbj Z (p?, (C) - ﬁz (c))z
IOSS =0 c Eclasses

L), - loss function cho dy doan vi tri bounding box so véi ground truth.
L op; - loss function cho dy doan trong cell cé object hay khong.

L s - loss function cho dw doan phan phéi xac suét cho tirng class.
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A s

Loss Function

YOLO-v1 Architecture

Localization
loss

Confidence
loss

Classification
loss

S —

Am,..zzjl‘“” @i = 2% + (v - 90)°]:

box confidence score = Pr(object) - IOU ™"

conditional class probabilities = Pr(class;|object)

class confidence score = Pr(class;) - I OUtmth

1 when there is object, © when there is no object (in the box j of the cell i)

Bounding box location (x, y) when
e BRG] L SRR ! there is object

s2 B i
+ Acoora 3 D 137 [(\/_' \/_) + (\/_ \/—) ]r— Bounding box size (w, h) when there is

i=0 ;=0 e e N A object

Confidence when there is object

Confidence when there is no object
(in the box j of the cell i)

Class probabilities when there is object
(in the cell i)

1when there is no object, O when there is object
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B 2 el Fast YOLOv1

\\\ 9 layers instead of 24
\ Y

SRR ===
2 7 7
4096
r Co
Det.
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Strong Spatial Constraints: Each cell only predicts two bounding boxes and can only have two class

N

YOLO struggles with small objects that appear in groups, like flocks of birds

Relative Coarse Features:

YOLO has many downsampling layers

<

It struggles to generalize to objects in new or unsual aspect ratios or configurations

A Small-Object Localization



g Al)AVETNAM YOLO-v2 Motivations

\/ YOLO v1 was faster than Faster R-CNN, but it was less accurate.

YOLO v1’s weakness was the bounding box accuracy. It didn't predict object locations and sizes
well, particularly bad at spotting small objects.

SSD, another single-stage detector, broke the record by being better (more accurate) than Faster
R-CNN and even faster than YOLO v1.

D>

Authors wanted to make their object detector to recognize a wide variety of objects. Pascal VOC

. object detection dataset contains only 20 classes. They wanted their model to recognize much
more classes of objects
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[ A1) averay Changes in YOLO-v2

0 P

Batch Normalization

In YOLO v2, they added Batch Normalization to all convolutional layers

- It improved mAP by 2%
- It helped method model to avoid overfitting

T Batch Norm
ngnl-batch: Activations

Features ﬁea,n and Std Dev \ @rmallze \ @ale and Shift \
B T 1 ,, e
Q :‘"':‘"‘f‘"".‘"'ff m —_ —_— A' A-i—," -2 -~ §Output§
| Sl > w AL A= o 7| BNi= 10 A + B[ en
g E : ' | ' . 4 . @ s »

SR e o = \/%Z(Ac — p)? [ Beta J [Gamma]

s N 0/ \_ e/ _L® ) °/

_ i

@)vlng Average
Hmow, = Qpbmon, + (1 — @)p;
Omov; = AOmon; + (1 — @)

. , 4
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High-Resolution Classifier

- First, train the classifier on images of size 224 x 224
- Fine-tune the classifier on images of size 448 x 448 for 10 epochs on ImageNet
- Improve mAP by almost 4%

Stage1 - Classification Stage2 - Detection

224
YOLO V1 # 224 . ‘ 448 . 135 epochs (S1 + S2)
448

224
224 (160 epochs)
w R
448
448. (10 epochs)

448
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High-Resolution Classifier

- First, train the classifier on images of size 224 x 224

- Fine-tune the classifier on images of size 448 x 448 for 10 epochs on ImageNet
- Improve mAP by almost 4%

224

224 = 5 i

Train on ImageNet

Resize, fine-tune
on ImageNet

Fine-tune on detection
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l A Changes in YOLO-v2

P! S S
% Conv. Layers oy Conv.Layers <« < 5
- IxIxI28 &5 IxIx256] , S Conv.L
E Cony.Layer gy Cony. Luyer ?e 3:3:256 u’: 3:&5!2}"4 R "I‘:(lesaly;'s ,g- Conv. Layers ,g.. :
NTX6s2 & 33192 x }e
YOLOv1 B M e © Mool laver & 1x1x256 @ IxIxs12 ¢ 3x3x1024f™ x  3x3x1024 x| Flatten 8 FCLayer|S
F ek hea TR 33xS12 (3¢ 3x3x1024 T 3x3xlo24 A 3x3x1024 O [FCLayer S Reshape |
A ~ aniozczlyl:yer ? Muz;‘,ozoL l.;yer ; 33x1024-s2 X = 2
) ' ‘
Remove FC
o
"
§ S Conv. Layers ¢y Conv. Layers § < <
. ) Ix1x128 vy Ix1x256 Conv. Layers
. o~ Yy
Improve YOLOVI: high 3 CenvLayer Ti Convlayer S0 35005 e a1 P % Ixixsi2) -
resolution feature map S VORI R R B axaxsi2 R axaxiooe [ 3xixioo4 (BN 3xoxic2e [N
™ Q Maxpool Layer g Maxpool Layer : Ix3x1024-s-2 : :
3 - 2x2-s-2 2x2-s-2 L =
-9
o=
o
< 5
. e Conv. Layers ¢y Conv. Layers ot . <
Improve YOLOVI1: high I comiaer % Convlsyer & Ixix128 5 ixix256] , RSl Con: Layen
. % IxIx64s2 3x3x192 x 3x3x256 x 3x3x512 Ix1x512 2 Conv. Layers =
resolution feature MAP % MaxpoolLayer & MaxpoolLayer 8  1XIx256 @  IxIxSI2 3x3x1024 3x3x1024 X
I e B 0. B xxsi2 B axixims Ix3x1024 3x3x1024
% ™ e Mangrzol l;ycr @ Maxz;;‘ozol l;ycr 3x3x1024-s-2
3 - -5~ =S~
=%
o

Remove Max Pool
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Al L Changes in YOLO-v2

YOLO V1 YOLO V2

(LT

7x7 14x14

Problem: If you have even number of grid cells then there is no single center location
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B Al) ST Changes in YOLO-v2

YOLO V1 YOLO V2
(LR Lretguet i di
o
7X7 13x13

Problem: If you have even number of grid cells then there is no single center location
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Changes in YOLO-v2

= Pass-through layer
Reorg / 2
(a) 13 \
208 713 |
2048
104
52
416 208 26 13 N 13 N 43
104 52 26 13 | 13 | 13
3 32 %! 756 512 3072
Conv, Layer Canv, Layer Conv. Layer Conv, Layet Conv. Layer Conv, Layer Conv, Layer
3Ix3x32 3x3x%x64 3x3x128 3x3Ix256 3x3x512 3x3x1024 3x3x1024
MaxPooling MaxPooling 1x1x64 1x1x128 1x1x256 1x1%x512 1x1x40
3x3x128 Ix3Ix256 3Ix3x%x512 3Ix3x1024
MaxPooling MaxPooling 1x1x256 1x1x512
3x3x512(a) 3x3x1024
MaxFooling 3x3x1024

Bx3x1024]
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Pass-through layer

Changes in YOLO-v2

e\ \
26 \ concatenate 13
P | 42 13 2048 + 1024 = 3072
’ 13
3
512 1024 1024
2mx2mxc _, Divide | Concatenate — }\
l nto 4 channelwise
High resol tenso
/ Concatenate | mxmx
channelwise (4c,+c,
“onversion for
passthrough
mxm
Low resolution tensor
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Al) Changes in YOLO-v2

o

Convolutional with Anchor Boxes W
YOLO v1 suffered from a low recall rate @ | 1
= 0 ™ PP
O 1 EN P
YOLOv2 removes all fully connected layers and uses anchor boxes to predict bounding boxes ) TP
Precision = TP T FP
YOLO v1 only predicted two bounding boxes per grid cell, which means a total of 98 (= 7 x 7 x 2) Recall — TP
bounding boxes per image, much lower than Faster R-CNN. TP+ FN
Method mAP | FPS | batch size ||# Boxes || Input resolution
Faster R-CNN (VGGI16) | 73.2 7 1 ~ 6000 || ~ 1000 x 600
Fast YOLO 52.7 | 155 I 98 448 x 448
YOLO (VGG16) 66.4 | 21 I 98 448 x 448
SSD300 74.3 | 46 1 8732 300 x 300
SSD512 76.8 19 I 24564 212 x 512
SSD300 743 | 59 8 8732 300 x 300
SSD512 76.8 | 22 8 24564 512 x 512




[ Al) AT YOLO-v1 vs. YOLO-v2

@, ] !;
flatten FC FC
T n T
1024 50176 4096 1470 30

Two bounding boxes had to share the same class probabilities. As such, increasing the number of bounding boxes would
not benefit much. On the contrary, Faster R-CNN and SSD predicted class probabilities for each bounding box, making it easier
to predict multiple classes sharing a similar center location.



o Al)AVETNAM YOLO-v1 vs. YOLO-v2

V YOLOv1 was an anchor-free model that predicted the coordinates of B-boxes directly using fully
connected layers in each grid cell.

Inspired by Faster-RCNN that predicts B-boxes using hand-picked priors known as anchor
boxes, YOLOvZ also works on the same principle.

(,,

Unlike YOLOv1, wherein each grid cell, the model predicted one set of class probabilities per
A grid cell, ignoring the number of boxes B, YOLOvZ predicted class and objectness for every
anchor box.



B Al) AT

Problem with Bounding Boxes

1

Remove FC
flatten FC FC
7 - 7
1024 501 |7 6 4096 1 1170 30

« With 13x13 grid cells - 13x13x2=338

- Should we increase the grids to 50x507?

Problem with fully connected layer => YOLOV2 1s fully convolutional network
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o Problem with Bounding Boxes

13 A

2

- 1 class per grid cell

« Limits the number of

objects detected =
« Solution: class C
prediction per box =
Y. |
Q),), ‘ ’o% %4/ : ";7’/,7 /‘J-T‘E, /(\0/ @’.‘o' /)Z’/
“% ‘o 7 0
oc 6 Od %
[ /o()/ /o(y/ ("//
1st - 5th 6th - 10th 11th - 30th

Box #1 Box #2 Class Probabilities
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Reason for Poor Localization

- Boxes are learnt relative to grid cell

- Objects can be of different shapes

Anchor box 1s a solution
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Dimension Clusters

Dimension ClustersUnlike Faster-RCNN, which used hand-picked anchor boxes, YOLOvZ used a
smart technique to find anchor boxes for the PASCAL VOC and MS COCO datasets.

Redmon and Farhadi thought that instead of using hand-picked anchor boxes, we pick better
priors that reflect the data more closely. It would be a great starting point for the network, and
it would become much easier for the network to predict the detections and optimize faster.
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Dimension Clusters

Using k-means clustering on the training set bounding boxes to find good anchor boxes or
priors.

a) They picked the distance function as follows: d(box, centroid) =1 -
I0U(box, centroid).

8.75

b) They ran K-Means with a various value of k and found out that k=5 gives a

good tradeoff between between model complexity and high recall.

Avg I0U

’ 5 x [Location,classes,
’} objectness]

123456 7 8 9101112131415
# Clusters
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o

Dimension Clusters

Using k-means clustering on the training set bounding boxes to find good anchor boxes or

priors.
Custom KMeans
.75 @
g p——
-
: b—-
o =
]
- 3
x
o o
e 2
o vy
£ 3
° P °
3 & D
o 9.0
5 e .
12345678 9101112131415 P
Bounding Box Width (w) # Clusters
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Dimension Clusters

Using k-means clustering on the training set bounding boxes to find good anchor boxes or

priors.
a) They picked the distance function as follows: d(box, centroid) =1 -
I0U(box, centroid).
b) They ran K-Means with a various value of k and found out that k=5 gives a
Box Generation Number of Anchors Average IOU good tradeoff between between model complexity and high recall.
Cluster Sum-Squared Distance 5 58.7
Cluster IOU 5 61.0
Anchor Boxes 9 60.9
Cluster IOU 9 67.2

| 5 x [Location,classes,
’} objectness]
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Direct Location Prediction vs. Offset location predictions

Instead of predicting the direct coordinates , they
: b=o(t )+, predict offsets to these bounding boxes during
b =p et the training.




13 Al | AIVIET NAM

9 @aivietnam.edu.vn

Changes in YOLO-v2

Add fine-grained feature The idea is similar fo the skip connections in ResNet

416
Reorg / 2
(a) <13 \
208 713 |
2048
104
52
416 208 26 ‘BQI N\ 13 N 13
104 32 26 13 l 13 |
3 %) \pi: 756
Conv, Layer Conv. Layer Conv. Layer Conv, Layer Conv, Layer Conv, Layer Conv, Layer
3x3x32 3x3x64 3x3x128 3x3x256 3x3x512 3x3x1024 3x3x1024
MaxPooling MaxPooling 1x1x64 1x1x128 1x1x256 1x1x512 1x1x40
3x3x128 3x3Ix256 Ix3x512 3x3x 1024
MaxPooling MaxPooling 1x1x256 1x1%x512
Ix3Ix512(a) Ix3x 1024
MaxFooling 3x3x1024
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Multiple-Scale Training

Detection Frameworks Training Data mAP FPS

Fast R-CNN 2007+2012 70.0 05

Faster R-CNN with VGG-16 backbone 2007+2012 732 7.0
Faster R-CNN with ResNet backbone 2007+2012 764 5.0
YOLOv1 2007+2012 634 450

SSD300 2007+2012 743 45.0

SSD500 2007+2012 76.8 19.0

YOLOv2 with input size 288 x 288 2007+2012 69.0 91.0
YOLOv2 with input size 352 x 352 2007+2012 73.7 81.0
YOLOV2 with input size 416 x 416 2007+2012 76.8 67.0
YOLOv2 with input size 480 x 430 2007+2012 778 59.0
YOLOV2 with input size 544 x 544 2007+2012 78.6 400
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L. h . h b kb Type Filters | Size/Stride Output
- Convolutional 32 3x3 224 x 224
lg t Welg t ac One Maxpool 2% 2/2 112 x 112
Convolutional 64 3x3 112 x 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3x3 56 x 56
Convolutional 64 1x1 56 X 56
Convolutional 128 3x3 56 x 56
Maxpool 2:%X2/2 28 x 28
Convolutional 256 3 X3 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x3 28 x 28
A . Maxpool 2 x 2/2 14 x 14
Darknet-19 A fully convolutional model with 19 Comoluional | 512 | 3x8 | 14x14
Convolutional 256 1x1 14 x 14
. . . Convolutional 512 3:%3 14 x 14
convolutional layers and five max-pooling Comoluional | 256 | 1x1 | 14x 14
Convolutional 512 3 x3 14 x 14
| d ' d Maxpool 2 x 2/2 Tx7
Convolutional 1024 3 %3 TxXT
aye rS Was eSIgne ' Convolutional 512 1x1 T%7T
Convolutional 1024 3x3 TxT7
Convolutional 512 1x1 TxT7
Convolutional 1024 3x3 Tx7
Convolutional 1000 1x1 TxT7
Avgpool Global 1000
Softmax

DarkNet

----------------------------------------------
..........................

E, ................. § § g ...... g dasses g
: : : conv. conv. 3 conv. 3 conv. | 5conv. H &% : -
: nege: g’ maxpool > maxpool > maxpool > maxpool > maxpool > O CoMv + boundar; |




s Al AVIETNA YOLO-v1 vs. YOLO-v2

7
Image : 224 x 224 """ ] o
Image Filters | Size/Stride | Output / WOl"kf'ow ComparISlon
Convolutional | 32 3x3  |224x224 - 4 4 YOLO v1 YOLO v2
p e
Maxpool 2x2/2 | 12x112 Generate Datasets Generate Datasets
| Ground Truth 1, Ground Truth 1,
Convolutional | 64 3x3 12x1u2 - /I Ground Truth 2, Ground Truth 2,
Ground Truth n ) L Ground Truth n )
Maxpool 2x2/2 56 x 56 I T T
Conoldtiona| /128 xS B6%86 | Data Augmentation Data Augmentation
Convolutional 64 1x1 56 x 56
Convolutional | 128 3x3 56 x 56 | E¢j
Maxpool 2x2/2 | 28x28 : | Backbone :
! A H
Convolutional | 256 3x3 28 x 28 ] ' . ] :
Convolutional 128 1x1 28 x 28 E............... ...............4:
Convolutional | 256 3x3 28 x 28
Maxpool 2x2/2 ¢ %75 ¢ i :
Convolutionl | 512 3x3 14 x 14 t Neck
Convolutionel | 256 1x1 14 x 14 !
Convolutional | 512 3Ix3 14 x 14
Convolutional | 256 1x1 14 x 14 0 Yolo Loss v1 o Yolo Loss v2
Convolutional | 512 3x3 Wocld e (Intersection D (Intersection Localization Loss Amhors]
over Union) over Union)
Confidence Loss Confidence Loss ¢
Wscpanl 2x2/2 T Classification Loss Classification Loss
Convolutionel | 1024 3x3 7x7
I Update Gradients Update Gradients
Convolutional | 512 1x1 7x7 | B — — e S
Convolutional | 1024 3x3 7x7 ; : f :
\ el ' max -4
Convolutional | 512 1x1 T7x7 i Non max‘.mum f:’ ' - Non imum -,9_ :
. 5 supression 5 ! supression g
Convolutionel | 1024 3x3 TxT e : S i s
s o 5 i
Convelutional | 1000 1x1 T J— > Classification 1000 | T S o ) T
Avgpool Global Evaluation will be explained in detail after the Yolo V3 Training.
Softmax

https.//wikidocs.net/167705
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YOLO v1 Loss

#3003 (nle) - i)
i=0 ¢ € classes
Loss
function YOLO v2 Loss

YOLO-v1 vs. YOLO-v2

where

Loy by Ly th
s

Pw, Ph

Czy Cyy Pwy Ph
biz: by biss b
o(to)

by = a(ty) + ¢y
by = Piy elv
by, = pp, €

Pr(object) x IOU (b, object) = o(t,)

are predictions made by YOLO.

is the top left corner of the grid cell of the anchor.
are the width and height of the anchor.

are normalized by the image width and height.
are the predicted boundary box.

is the box confidence score.
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Abstract

Detection transformer (DETR) relies on one-to-one ax-
signment, assigning one ground-truth object to one predic-
tion, for end-to-end detection uulwm NMS post-, prmes.nng
It is known that o nany ing one
ground-truth object to multiple pmdnnkms, succeeds in de-
tection methods such as Faster R-CNN and FCOS. While
the naive ane-to-many assignment does not work for DETR.
and it remains challenging to apply one-to-many assign-
ment for DETR training. In this paper, we introduce
Group DETR, a simple yet efficient DETR training ap-
proach thas introd. ise way for to-many
assignment. This approach involves using multiple groups
of object queries, i within

a growy

Figure 1, Group DETR accelerates the training process for
DETR variants. The training convergence curves are obtained
on COCO vai2017 [24] with ResNet-50 [22]. Dashed and bold
curves comrespond to the baseline models and the Group DETR
Best viewed in coloe.

each group, and performing decoder self-attention sepa-

rately. It data ion with ically- crafied
learned object query augmentation. It is also equivalent
1o It ly training haring ks of

such as pp
(NMS) [23) n.nd enchor generation (44, 3%, 43]. The ar-
consists of a CNN [2?] and transformer en-

the same architecture, introducing more supervision and
thus improving DETR 1raining, The inference process is the
same as DETR trained normally and only needs one group
of queries without any architecture modification. Group
DETR is versatile and is applicable to various DETR vari-
ants.  The experiments show that Group DI:TR signifi-

coder [57], and a transformer decoder that consists of self-
attention, cross-attention and FFNs, followed by class and
box prediction FFNs. During tramning, one-to-onc assign-
meat, where one ground-truth object is assigned to one sin-
gle prediction, is applied for learning to only promote the
predictions Amgmd to ground-truth objects, and demote

the dupli

canily speeds up the training
the performance of various DETR-based models, Codc will
bem»mlablea.“lup‘ //github.com/AttendvVis/

Thls work explores the solutions to accelerate the DETR
training process. Previous solutions contain two main lines.
The one line is to modify cross-attention so that informa-
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Abstract

This paper is concerned with the matching stability prob-
lem across different decoder layers in DEtection TRans- %
formers (DETR). We point our that the unstable matching E
in DETR is caused by a multi-optimization path problem,
which is highlighted by the one-to-one matching design in -
DETR. To address this problem, we show that the most im- -
portant design is to use and only use positional metrics (like o
10U) to supervise classification scores of positive examples.
Under the principle, we propose two simple yer effective
»wdtﬁcauom by integrating positional metrics to DETR's

ion loss and hing cost, named position-
supervised loss and position-modulated cost. We verify our
mr!hodr on several DETR variants. Our methods show con-
sistent i
methods w:rh DINO, we achieve 50.4 and 51. 5 AP on the
COCO detection benchmark using ResNet-50 backbones
under 1% (12 epochs) and 2% (24 epochs) training settings,
achieving a new record under the same setting. We achieve
63.8 AP on COCO detection test-dev with a Swin-Large
backbone. Our code will be made available at https://
github. com/IDEA-Research/Stable~DINO.

{suhangss, deszj ) @mail tsinghua.edu.cn

decades with the development of deep learning,
the convolutional neural network (CNN) [36, 14, 16, 7].
Detection Transformer (DETR) [3] proposed a novel
Transformer-based object detector, which atiracted a lot
of interest in the research community.

{yunji.cjy, huangjun.hj} @alibaba-inc.com
leizhang @idea.edu.cn
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Figure 1: Comparison of our methods (named Stable-DINO
in figures) and baselines. We compare models with ResNet-
50 backbones in the left figure and models with Swin-
Transformer Large backbones in the right figure. All mod-
els use a maximum 1/8 resolution feature map from a back-
over baseli By i g our bone, except AdaMixer uses a maximum 1/4 resolution fea-
ture map.
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Abstract

In this paper, we provide the observation that too few
queries assigned as positive samples in DETR with one-
to-one set matching leads to sparse mperwsx(m on the en-
coder’s output which considerably hurt the discriminative
Sfeature learning of the encoder and vice visa for attention
learning in the decoder. To alleviate this, we present a novel

lak ive hybrid assig ts training scheme, namely
Co-DETR, to learn more efficient and effective DETR-based
detectors from versatile label assignment manners. This
new training scheme can easily enhance the encoder’s
learning ability in end-to-end detectors by training the mul-
tiple parallel auxiliary heads supervised by one-to-many la-

< Co-DETR

- DINO-Daformaole-DETR |

@ H-Deformabie DETR
Deformabie-DETA

DAB-DETR
27 - DN-DETR
B FosterACNN
| M- HIC
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< ag! / |
/ ‘e
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i x
a2+ “/ L
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Jinsdong Wang!! Yang Liu'* * Yao Zhang!® * Yixin Wang? *  Yang Zhang* Jiang Tian* bel assignments such as ATSS and Faster RCNN. In addi- Epoch
ingdong Wang Zhongchao Shi*  Jianping Fan* Zhigiang He'#® 1 tion, we conduct extra customized positive queries by ex- Figure 1. Performance of models with ResNet-50 on COCO val.
'Baidu VIS *Australian National University *Beihang University *Peking University llngtjtute of Computing Technology (ICT), Chinese Academy of Sciences  *Stanford University tracting the positive coordinates from these auxiliary heads Co-DETR outperforms other counterparts by a large margin.
i “University of Chinese Academy of Sciences Al Lab, Lenovo Research  “Lenovo Ltd. to improve the training efficiency of positive samples in the

{liuyang20e, zhangyao215}émails . ucas.ac.cn  yxinwangBstanford.edu decoder. In inference, these auxiliary heads are discarded
Tabla't:: O method eptabllibn s sew SATA G thi COOO tandry Jeailerficand. {zhangyang20,tianjiangl, shizc2, jfanl, hezq}@lenovo.com 3 a series of variants [*1, 37, 44] such as ATSS [41], Reti-
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= : and thus our method introduces no additional parameters P o
Method [eparams| Encoder Pretraining Data Detector Pretraining Data fwi Maskmap A sk para naNet [2 1], FCOS [22], and PAA [17] lead to the significant
T e P o e and compwational cost to the original detector while re- ieikihwekieh of ofjsct detection ik Osto-mny Tibel
DyHead (Swin-L) 6] 213M IN-22K (14M) nfa Ca Abstract qudting o hand-crafted non-maxtmuns suppression (NMS), assignment is the ctjrc scheme of thcm. where each giound-
Soft-Teacher (Swin-L) [25] | 254m IN-22K (14M) COCO-anlabeled + 0365 v |ors We conduct extensive experiments to evaluate the effective- wuth box.is- assiened to:multinle coor,dinates < thie dotac
. nu.P (@ytesd) 1] 27804 ; IN-22K (14M) FourODs + GaldG « Cup24M x hl 5 Recently, the dominant DETR-based approaches apply - ness of the proposed approach on DETR variants, including ; ; 1gne ! p 3
Flocence (CoSwin-H) [20]  [>637M FLO-000M (900M) FLD-9M x  [62.4 central-concept spatial prior to accelerating Transformer - DAB-DETR, Deformable-DETR, and DINO-Deformable- tor’s output as the supervised target cooperated with propos-
GLIPV (CoSwinH) [29]  [>637M FLD-900M (900M) FourODs + INBoxes + GoldG + CCISM +SBU| v [62.4 detector convergency. These methods gradually refine the - ’ g 2 als [11,27], anchors [21] or window centers [37]. Despite
SWInV2-G (HTC+) (1) | 2.08 IN-22K + exi-TOM (B4M) 0368 v et reference points to the center of target objects and imbue ob- >< DETR. The state-of-the-art DINO-Deformable-DETR with their promising performance, these detectors heavily rel
DIND (Swin-L) [24] 218M IN-22K (14M) 0365 x |e3s Jject queries with rhe updaled central reference mjammnon S Swin-L can be improved from 58.5% to 59.5% AP on COCO B g P 3 4 g y Yy
BEIT-3 (ViTDet) [22] 198 [IN-22K + Image-Text (36M) + Text (160GH)| 035 v |e7 for spatially condi ion. However, izing ref- &“v (av] val. Surprisingly, incorporated with ViT-L backbone, we on many hand-designed components like a non-maximum
FD-SwinV2-G (HTC++) [21] | 3.0B IN-22K + IN-1K + ext-TOM (85M) 368 v |en2 erence poinis may severely deteriorate queries :allmcyund & o P! 81 TP * suppression procedure or anchor generation [/]. To con-
FocalNetH (DINO) [26] | 746M IN-22K (14M) a36s x |eas confuse detectors due to the indiscriminative spatial prior. To achieve 66.0% AP D”. COCO_ test-dev and 67.9% AP on duct a more flexible end-to-end detector, DEtection TRans-
o TR 13 (O oz | o Py | = |oas bridge the gap berween the reference poinis of salient queries e ‘e'—"l e E— LVIS val, outperforming previous methods by clear mar- f r (DETR) [1] is proposed to view l:hc obiectdetisction
method)| ¥ 2 0 a0 Topd OUneaTpd () L] ORAG N 3 . : orme; is 1
Tand FocalNet 1751 and Transfoymer desectors, we propose SAlisn Potnt-based N " e gins with much fewer model sizes. Codes are available at PIOPO Jec

All the results are achirved with k‘u timo sugmentation, In the table, we follow the notatices for various datasets used im DINO [25
(3

‘i Mask” means using mask annotations whea finctuning the detectars on COCO

Abstract

We present a strong object detector with encoder-
decoder pretraining and finetuning.  Our method, called
Group DETR v2, is built upon a vision transformer encoder
ViT-Huge (7], a DETR variant DINO [28], and an efficient
DETR training method Group DETR [3]. The training pro-

to achieve superior results on various viston tasks, includ-
ing object detection, With supervised encoder-decoder pre-
training on a large-scale dataset, Object365 [20), DINO [ 28]

achieves a state-of-the-art result on COCO [11],
Our method, Group DETR v2, is built upon ViT-Huge,
DlNO and Group DETR. We adopt an encoder-decoder
g and ing pipeline: ining and then

arXiv:2211.02006v2 [cs.CV] 15 Mar 2023

DETR (SAP-DETR) by treating object detection as a trans-
formation from salient points to instance objects. Con-
cretely, we explicitly initialize a query-specific reference
point for each object query, gradually aggregate them into
an instance object, and then predict the distance from each
side of the bounding box 1o these points. By rapidiy attend-
ing to query-specific reference regions and the conditional
box edges, SAP-DETR can effectively bridge the gap be-
tween the salient point and the query-based Transformer

Figure |. Comparison of SAP-DETR and DAB-DETR under 36
training epochs, (a) Statistics of the query count in different classi-
fication score intervals. (b) and (c) Distribution of reference points.
and the visualization of the query with top-20 classification score
(blue proposal bounding boxes and red reference points) in different
decoder layers. (d) Visualization of bounding boxes for positive
queries (blue) and ground truth (red) during training process.

tors [6,11, 7] based on Convolutional Neural Net-

https://github.com/Sense-X/Co-DETR.

as a set prediction problem and introduce the one-to-one set
matchine scheme hased on a transformer encoder-decoder

cess conyisis of self-supervised pretraining and finetuning a fmctunmg a ViT-Huge encoder on ImageNet-1K (7], pre- detector with a signifi Ie gency speed. Exp 3,20,

WiT-Huge encoder on ImageNet-1K, pretraining the detec- training the detector, both the encoder and the decoder, tally, SAI’ DETR achieves 1.4x convergency speed with wark;i(CNN\), have l;ocwa:]mgcspmd ﬂllﬂllmﬂ and Eﬂb

tor on Object365, and finally finetuning it on COCO. Group on Object365, and finally finetuning it on COCO. Group and stably p the SoTA ap- sigmificant progress. Recently, C-arion ef @/, [ 2] proposed & 1
DETR v2 achieves 64.5 mAP on COCO test-dev, and estab-  DETR V2 achicves 64.5 mAP on COCO test-dev [17] (Ta- rmafhes by ~. 0AP. Based on Res N,, DC-101, SAP-DETR Lo end-w-e?‘_iﬁa:li;f;n rf? object _?_e‘lecuon base(c:;;r l'lg 4

lishes a new SoTA on the COCO leaderboard'.

ble | and Table 2), setting a new record for COCO object
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