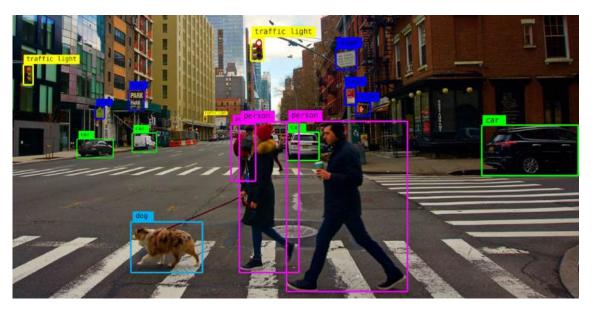


Object Detection (Part 1: Traditional Algorithms)



Code & Data

Vinh Dinh Nguyen - PhD in Computer Science

Outline

Applications of Object Detection

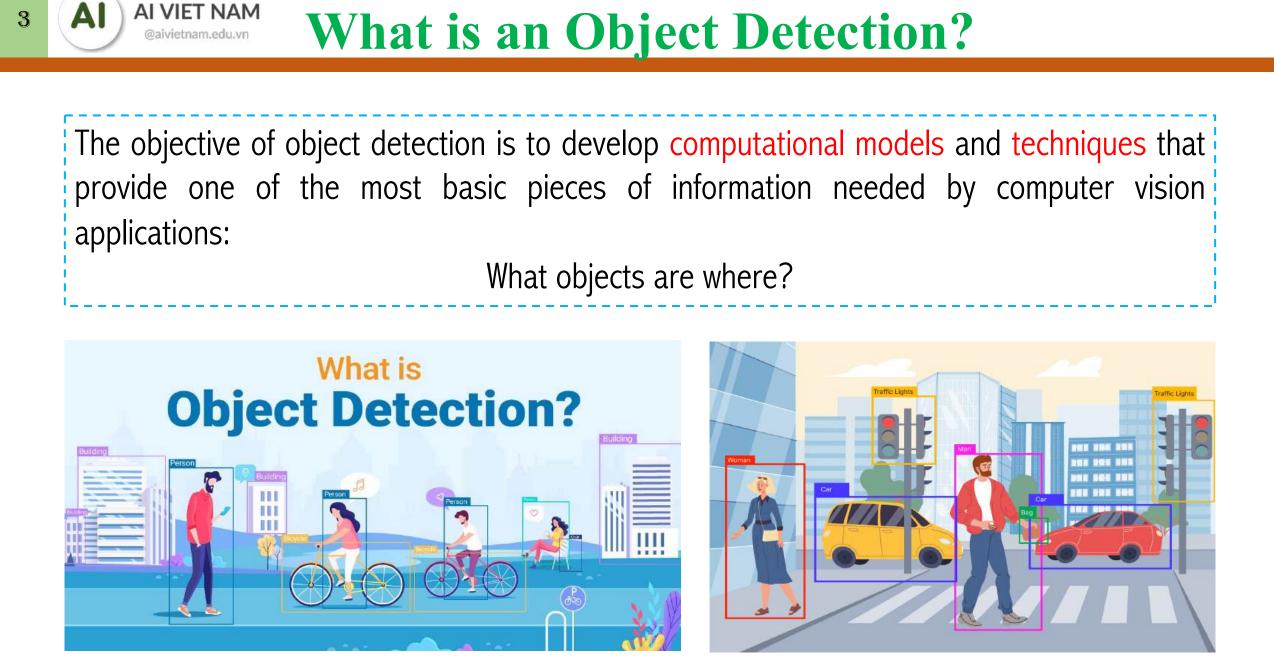
Object Detection Milestones

Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs



Outline

Introduction to Object Detection

Applications of Object Detection

Object Detection Milestones

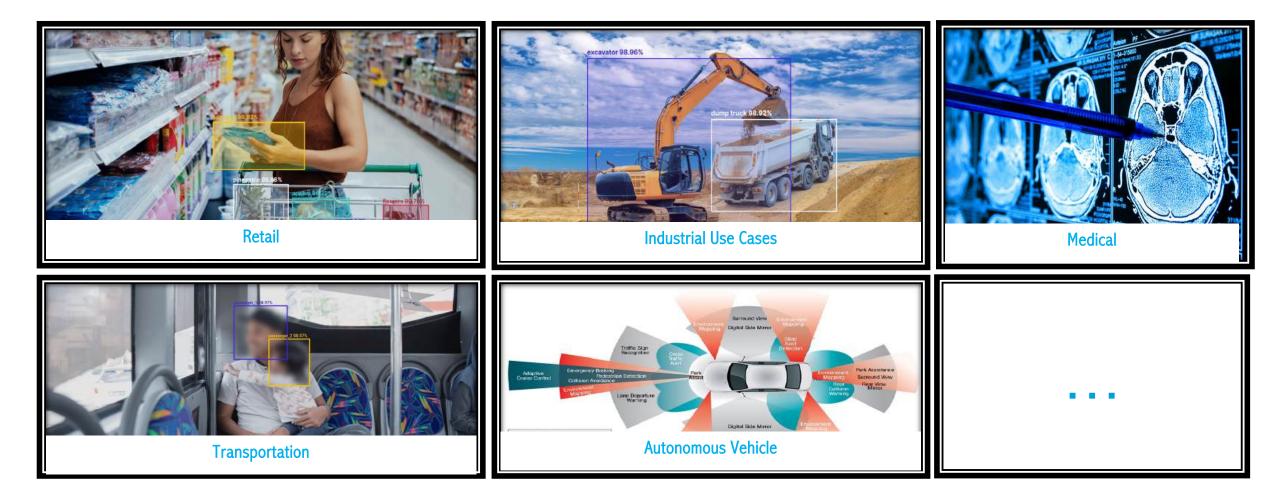
Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

AI VIET NAM @aivietnam.edu.vn Object Detection for Businesses



5

Outline

Introduction to Object Detection

Applications of Object Detection

Object Detection Milestones

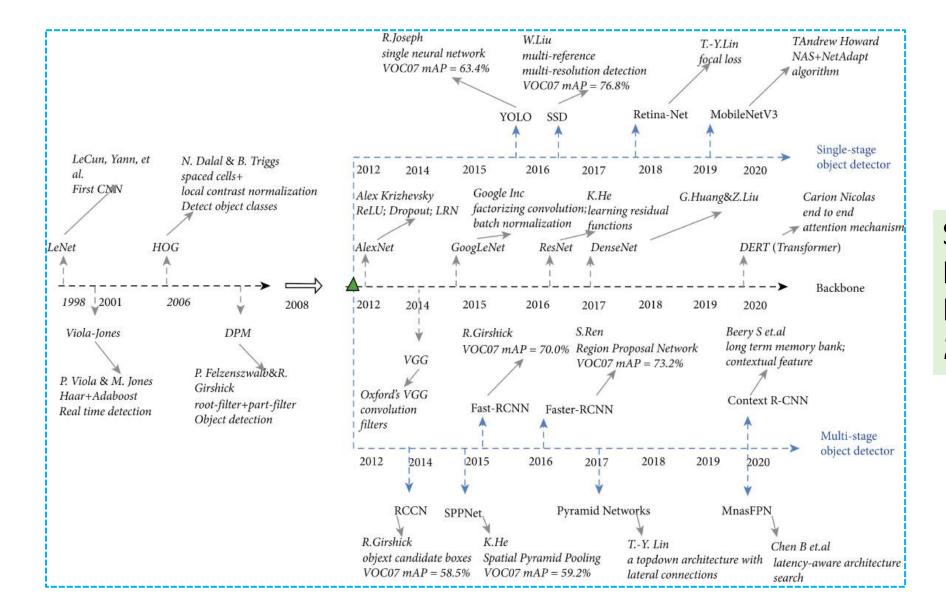
Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

Object Detection Milestones



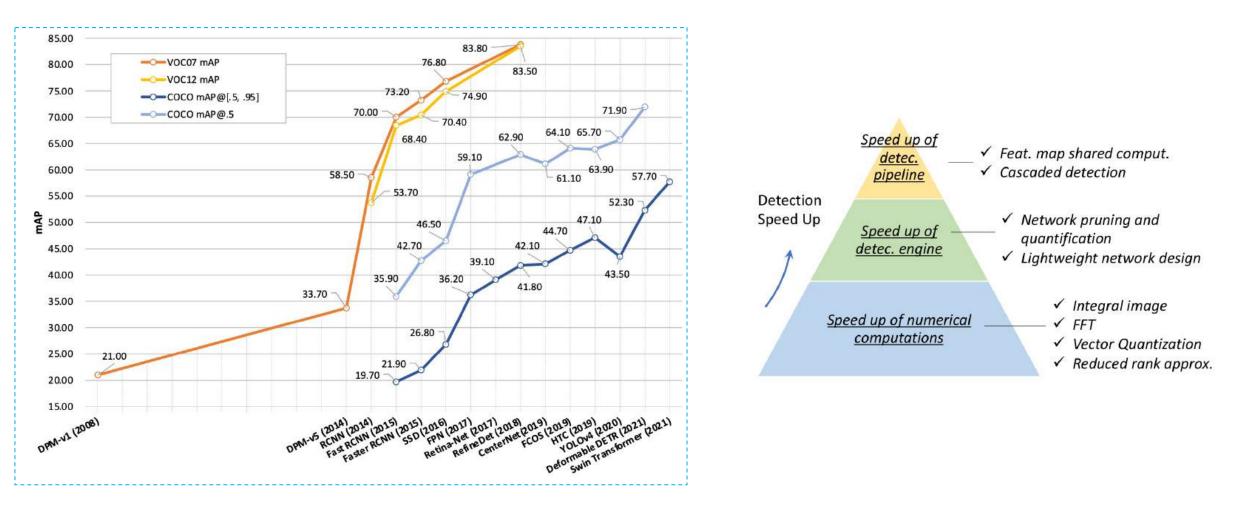
Shaoxi Li et al. "Survey onDeep Learning-BasedMarine Object Detection",2021

7

AI VIET NAM

@aivietnam.edu.vn

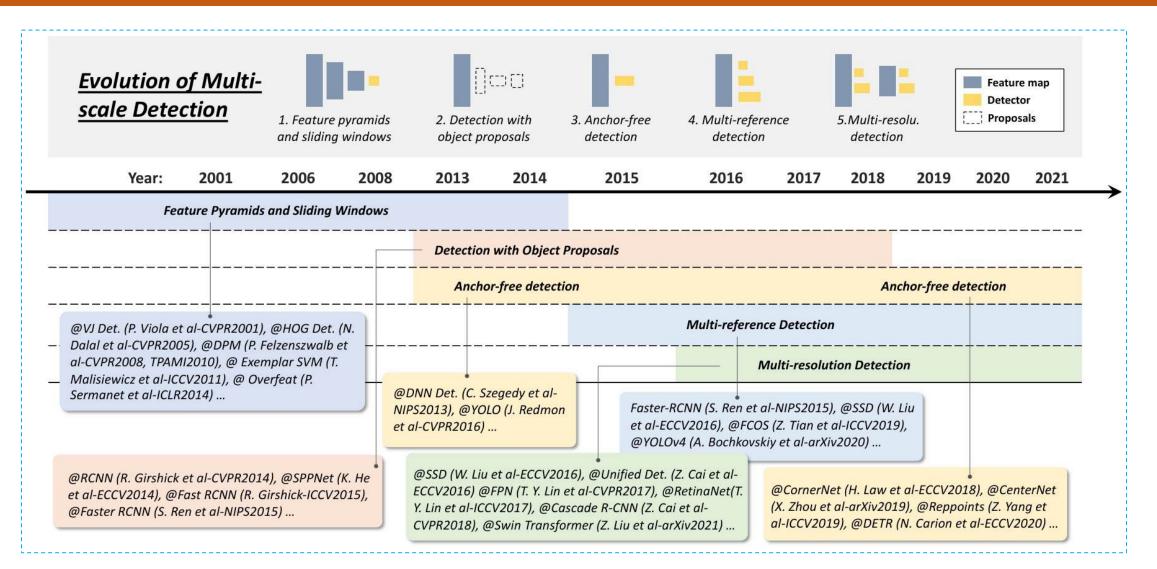
8



Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

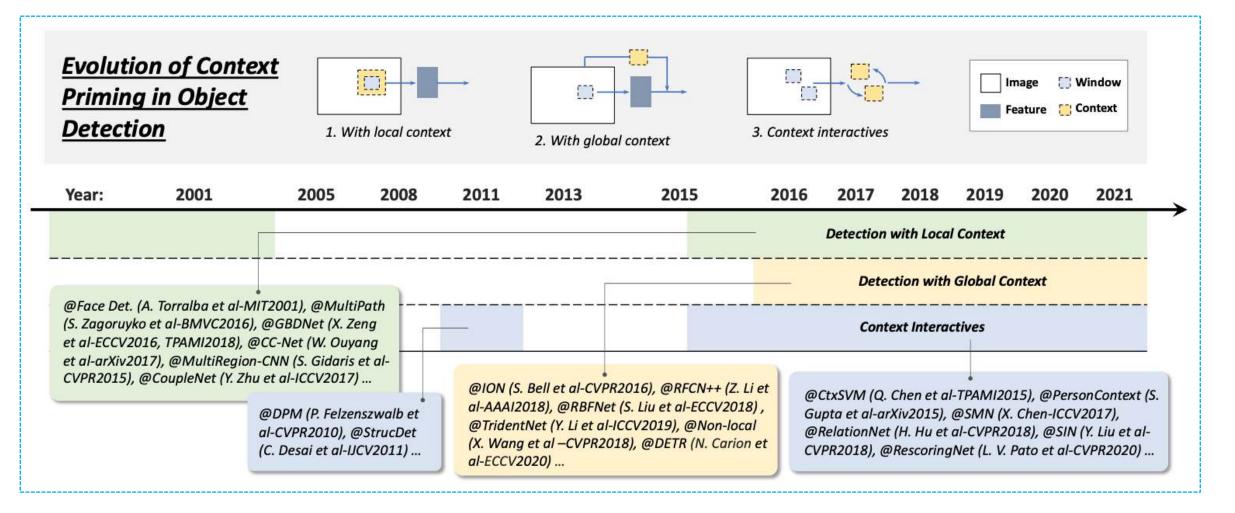
aivietnam.edu.vn

Object Detection Milestones



@aivietnam.edu.vn

10



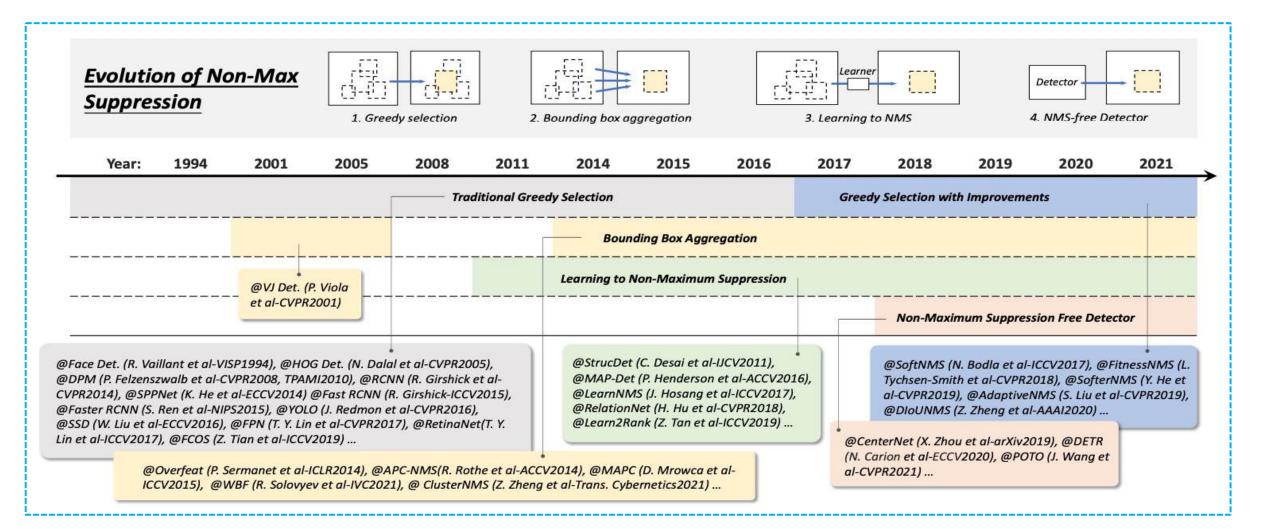
@aivietnam.edu.vn

				Evolution	of Hard N	legative Mir	ning						
Year:	1994	2001	2005	2008	2014	2015	2016	2017	2018	2019	2020	2021	
Method			Bootstrap		Without Hard Negative Mining				Bootstrap + New Loss Functions				
Remarks	Bootstra	8	vused to deal with resources of early		By simply ba object a	Focusing on hard examples Computing power is no longer a problem							
Face Det. (H. A. Ro t. (C. P. Papageor al-CVPR2001), @ DPM (P. Felzenszw	giou et al-l HOG Det. (l	CCV1998), @ N. Dalal et a	VJ Det. (P. Viola I-CVPR2005),		@Fast RCNN (R. . Ren et al-NIPS2	014), @SPPNet (K. He Girshick-ICCV2015), 2015), @YOLO (J.	6	955D (W. Liu et (90HEM (A. Shrin CCV2017), @Rej CCV2019), @YO	vastava et al fineDet (Zhar	-CVPR2016), ng et al-CVPR	@RetinaNet 18), @FCOS	(T. Y. Lin et al- (Z. Tian et al-	

The training of a detector is essentially an imbalanced learning problem. In the case of sliding window based detectors, the imbalance between backgrounds and objects could be as extreme as 107 :1

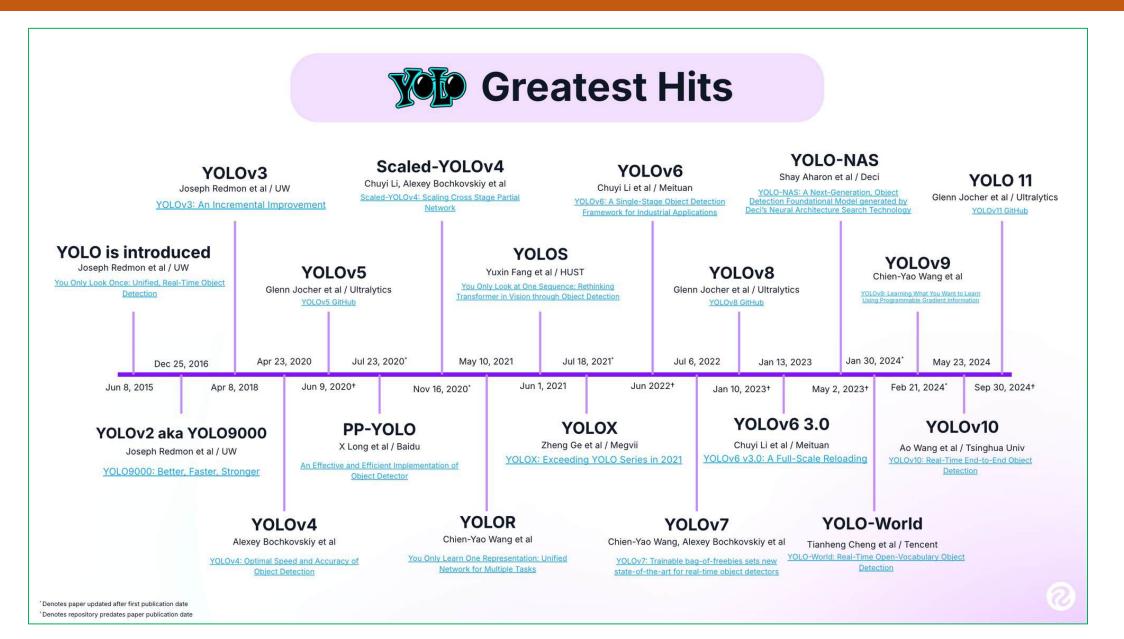
@aivietnam.edu.vn

12



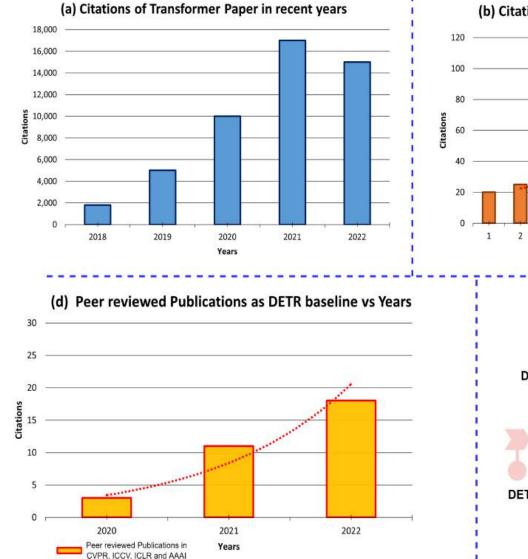
@aivietnam.edu.vn

Object Detection Milestones

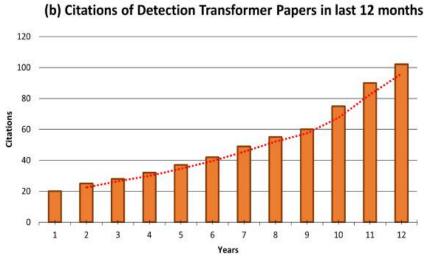


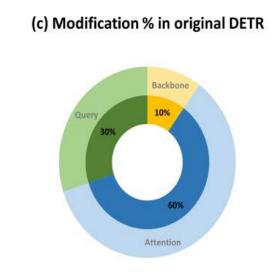
A

AI VIET NAM Object Detection: Transformer

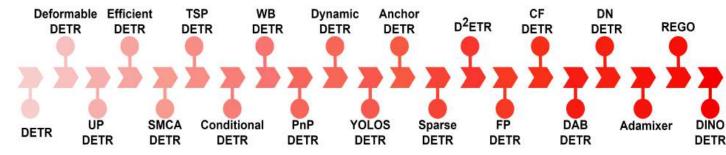


14





(e) Timeline of important developments in DEtection TRansformers (DETR)



<u>arXiv:2306.04670</u> [cs.CV]

A

AI VIET NAM

@aivietnam.edu.vn

Lightweight object detection models

No.	Authors	Detector	Туре	Input image	Published in	URL link
1	Li et al. (<u>2017</u>)	YOLOv3-DarkNet53	Anchor-based	320*320	arXiv 2018	https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch
2	Howard et al. (<u>2017</u>)	MobileNet-SSD	Anchor-based	300*300	arXiv 2017	https://github.com/chuanqi305/MobileNet-SSD
3	Sandler et al. (<u>2018</u>)	MobileNetv2-SSDLite	Anchor-based	320*320	CVPR 2018	https://github.com/tranleanh/mobilenets-ssd-pytorch
4	Li et al. (<u>2018</u>)	Tiny-DSOD	Anchor-based	300*300	arXiv 2018	https://github.com/lyxok1/Tiny-DSOD
5	Wang et al. (<u>2018</u>)	Pelee	Anchor-based	304*304	NeurIPS 2018	https://github.com/Robert-JunWang/Pelee
6	Qin et al. (<u>2019</u>), Huang et al. (<u>2018</u>)	YOLO-LITE	Anchor-based	416*416	ICBD 2018	https://github.com/reu2018DL/YOLO-LITE
7	Qin et al. (<u>2019</u>)	ThunderNet	Anchor-based	320*320	ICCV 2019	https://github.com/DayBreak-u/Thundernet_Pytorch
8	Tan et al. (<u>2019</u>)	MnasNet-A1 + SSDLite	Anchor-based	320*320	CVPR 2019	https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
9	Tang et al. (<u>2020a</u> , <u>2020b</u>)	LightDet	Anchor-based	320*320	ICASSP 2020	Not available
10	Yi et al. (<u>2019</u>)	YOLOV3-Tiny	Anchor-based	416*416	ICACCS 2020	https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
11	Long et al. (<u>2020a</u> , <u>2020b</u>)	PP-YOLO	Anchor-based	608*608	CVPR 2020	https://github.com/PaddlePaddle/PaddleDetection
12	Long et al. (<u>2020a</u> , <u>2020b</u>)	YOLOv4-Tiny	Anchor-based	416*416	arXiv 2020	https://github.com/truong2710-cyber/Mask-Detection-YOLOv4-tiny- Kaggle-Dataset
13	Tan et al. (<u>2020</u>)	EfficientDet	Anchor-based	512*512	CVPR 2020	https://github.com/xuannianz/EfficientDet
14	Huang et al. (<u>2021</u>)	PP-YOLOv2	Anchor-based	640*640	arXiv 2021	https://github.com/PaddlePaddle/PaddleDetection
15	Ge et al. (<u>2021</u>)	YOLOX-Nano	Anchor-free	416*416	ICSP 2022	https://github.com/Megvii-BaseDetection/YOLOX
16	Ge et al. (<u>2021</u>)	YOLOX-Tiny	Anchor-free	416*416	IJCINI 2022	https://github.com/TexasInstruments/edgeai- yolox/blob/main/exps/default/yolox_tiny.py
17	Cai et al. (<u>2021</u>)	YOLObile	Anchor-based	320*320	AAAI 2021	https://github.com/nightsnack/YOLObile
18	Wang et al. (<u>2021</u>)	Scaled YOLOv4	Anchor-based	608*608	CVPR 2021	https://github.com/WongKinYiu/ScaledYOLOv4
19	Wang et al. (<u>2021</u>)	Trident YOLO	Anchor-based	416*416	Wiley IET	Not available
20	Li et al. (<u>2021a</u> , <u>2021b</u> , <u>2021c</u>)	NanoDet	Anchor-free	320*320	Journals of Radar	https://github.com/RangiLyu/nanodet
21	Yu et al. (<u>2021</u>)	PP-PicoDet	Anchor-free	416*416	arXiv 2021	https://github.com/PaddlePaddle/PaddleDetection
22	Ding et al. (<u>2022</u>)	Slim YOLOv4	Anchor-free	416*416	JRIP	Not available
23	Liu et al. (<u>2022a</u> , <u>2022b</u>)	Mini YOLO	Anchor-free	320*320	Wiley Journal	Not available
24	Xu et al. (<u>2022</u>)	PP-YOLOE-S	Anchor-free	640*640	arXiv 2022	https://github.com/PaddlePaddle/PaddleDetection
25	Wang et al. (<u>2022a</u> , <u>2022b</u> , <u>2022c</u> , <u>2022d</u>)	YOLOv7-X	Anchor-free	640*640	arXiv 2022	https://github.com/WongKinYiu/yolov7
26	Li et al. (<u>2022a</u> , <u>2022b</u>)	L-DETR	Anchor-free	800*1333	IEEE Access	https://github.com/wangjian123799/L-DETR.git

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev 57, 242 (2024). https://doi.org/10.1007/s10462-024-10877-1

No.	Detector	Backbone	Loss function	AP	Proposal
1	YOLOv3-DarkNet53	DarkNet53	Logistic regression	38.1	Network structure makes greater use of the GPU, making it faster to evaluate than Darknet-19
2	MobileNet-SSD	MobileNet	Smooth L1 loss	19.3	Lightweight deep network is constructed using depth-wise separable convolutions
3	MobileNetv2-SSDLite	MobileNetv2	Smooth L1 loss	22.1	With fewer parameters and less computational complexity, gets competitive accuracy
4	Tiny-DSOD	DDB-Net	Smooth L1 loss	23.2	For resource-constrained uses based on DDB and D-FPN blocks
5	Pelee	PeleeNet	Smooth L1 loss	22.4	Variant of DenseNet, built with conventional convolution
6	YOLO-LITE	Darknet-53	L1 loss	12.2	A real-time detection model developed to run on portable devices lacking a GPU
7	ThunderNet	SNet535	Sigmoid	28.1	Embedded context enhancement and spatial attention module
8	MnasNet-A1 + SSDLite	MnasNet-A1	Smooth L1 loss	23.0	Directly measures real-world inference latency by executing the model on edge devices
9	LightDet	Modified ShuffleV2	Smooth L1 loss	24.0	Introduce an efficient feature-preserving and refinement module
10	YOLOv3-Tiny	Reduced Darknet-53	Logistic regression	16.6	Lightweight model of YOLOv3, which takes reduced training time
11	PP-YOLO	MobileNetV3	IoU aware loss	45.9	Balanced efficiency, directly applied in real application scenarios
12	YOLOv4-Tiny	CSP-ResNet	CloU loss	28.7	Reduced parameters, makes it suitable for edge devices
13	EfficientDet	EfficientNet	Focal loss	34.6	Proposed a weighted bi-directional FPN for feature fusion
14	PP-YOLOv2	ResNet101	IoU aware loss	49.5	Increasing the input size and follow the design of PAN to aggregate the top-down information
15	YOLOX-Nano	DarkNet53	GIoU loss	25.8	Dynamic label assignment strategy SimOTA
16	YOLOX-Tiny	CBAM	GIoU loss	32.8	Fuses convolutional attention and mixup data enhancement strategy
17	YOLObile	CSP-DarkNet53	GIoU loss	31.6	Offers mobile acceleration and block-punched pruning with a mobile GPU-CPU collaborative strategy
18	Scaled YOLOv4	CSPNet-15	CloU loss	28.7	Propose a network scaling approach that modifies the width, and resolution of network
19	TridentYOLO	CSP-RFBs	Focal loss	40.3	Propose a trident feature pyramid network
20	NanoDet	ShuffleNetV2	Focal loss	20.6	Based on visual saliency and perform feature learning on samples added with saliency maps
21	PP-PicoDet	Enhanced ShuffleNet	GIoU Loss	30.6	Improved detection One-Shot NAS pipeline
22	Slim YOLOv4	MobileNetV2	CloU loss	29.2	Efficient network computing methods for convolution
23	MiniYOLO	DSLightNet	CloU	21.4	Adopted depthwise separable convolution
24	PP-YOLOE-S	ResNet50-vd	IoU aware loss	43.1	Scalable backbone-neck architecture, and refined loss function
25	YOLOv7-X	RepCSPResNet	Assistant loss	53.1	Propose the trainable bag-of-freebies method to enhance accuracy
26	L-DETR	PP-LCNet	H-sigmoid function	-	Embedded group normalization

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev 57, 242 (2024). https://doi.org/10.1007/s10462-024-10877-1

AI VIET NAM

A

AI VIET NAM

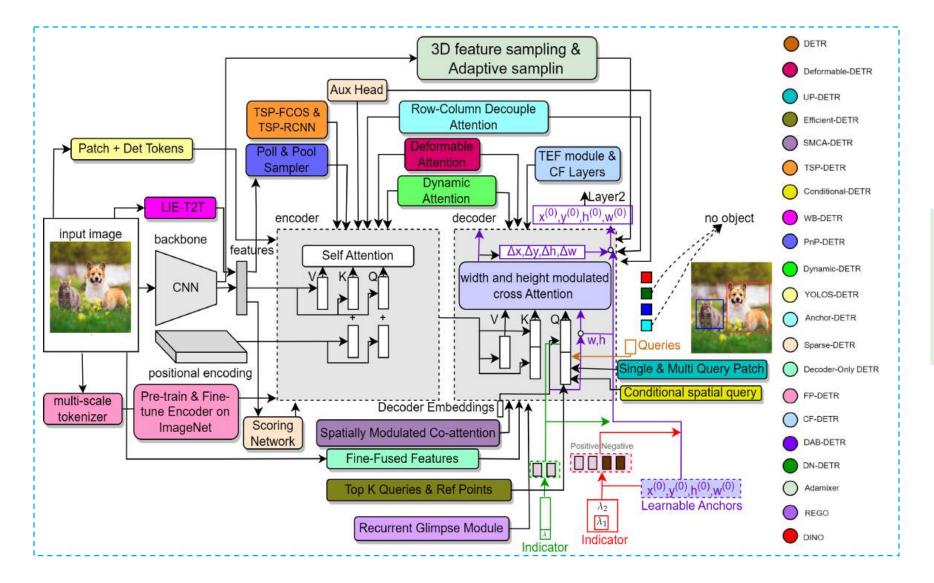
@aivietnam.edu.vn

Lightweight object detection models

No.	Light-weight object detector	Backbone	FLOPs	Inference time (ms)	FPS	Parameters (M)	Real-time applications
1	YOLOv3-DarkNet53	DarkNet53	1453B	22	171	-	
2	MobileNet-SSD	MobileNet	1.2G	-	59.3	4.31	*
3	MobileNetv2-SSDLite	MobileNetv2	0.8G	_	-	3.38	*
4	Tiny-DSOD	DDB-Net	1.12G	_	105	0.95	*
5	Pelee	PeleeNet	1.21B	-	205	5.98	*
6	YOLO-LITE	Darknet-53	0.48G	-	21	-	*
7	ThunderNet	SNet535	0.47	-	248	-	
8	MnasNet-A1 + SSDLite	MnasNet-A1	0.8B	203	-	4.9	*
9	LightDet	Modified ShuffleV2	0.50G	-	250	-	
10	YOLOv3-Tiny	Reduced Darknet-53	5.56 B	4.5	368	8.86	*
11	PP-YOLO	MobileNetV3	1.02G	10.48	73	1.08	
12	YOLOv4-Tiny	CSP-ResNet	-	_	371	6.06	
13	EfficientDet	EfficientNet	2.5B	10.20	98	3.9	
14	PP-YOLOv2	ResNet101	0.115G	14.50	68.9	1.08	
15	YOLOX-Nano	DarkNet53	1.08G	19.23	90.1	0.91	
16	YOLOX-Tiny	CBAM	6.48G	32.77	-	5.06	
17	YOLObile	CSP-DarkNet53	3.95G	-	17	4.59	
18	Scaled YOLOv4	CSPNet-15	6.3B	-	62	53	
19	TridentYOLO	CSP-RFBs	5.19B	-	29.3	-	
20	NanoDet	ShuffleNetV2	1.2G	13.35	-	0.95	*
21	PP-PicoDet	Enhanced ShuffleNet	0.73G	8.13	-	0.99	
22	Slim YOLOv4	MobileNetV2	_	_	60.19	_	
23	MiniYOLO	DSLightNet	_	_	-	2.06	*
24	PP-YOLOE-S	ResNet50-vd	110.7G	12.8	208.3	52.20	
25	YOLOv7-X	RepCSPResNet	189.9G	-	114	71.3	
26	L-DETR	PP-LCNet	-	-	-	_	

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev **57**, 242 (2024). https://doi.org/10.1007/s10462-024-10877-1

Object Detection: Transformer

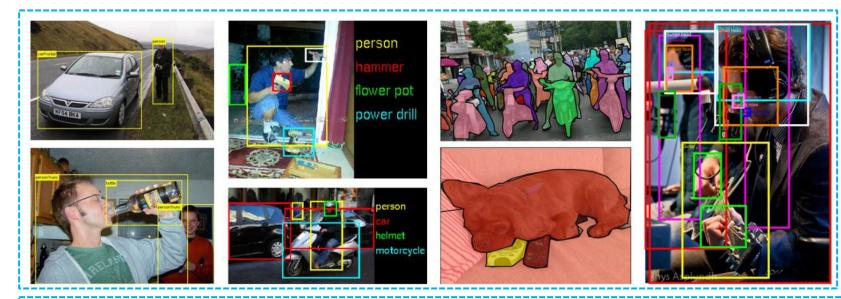


An overview of the Detection Transformer (DETR) and its modifications proposed by recent methods to improve performance and training convergence.

18

AI VIET NAM

Well-known Object Detection Datasets



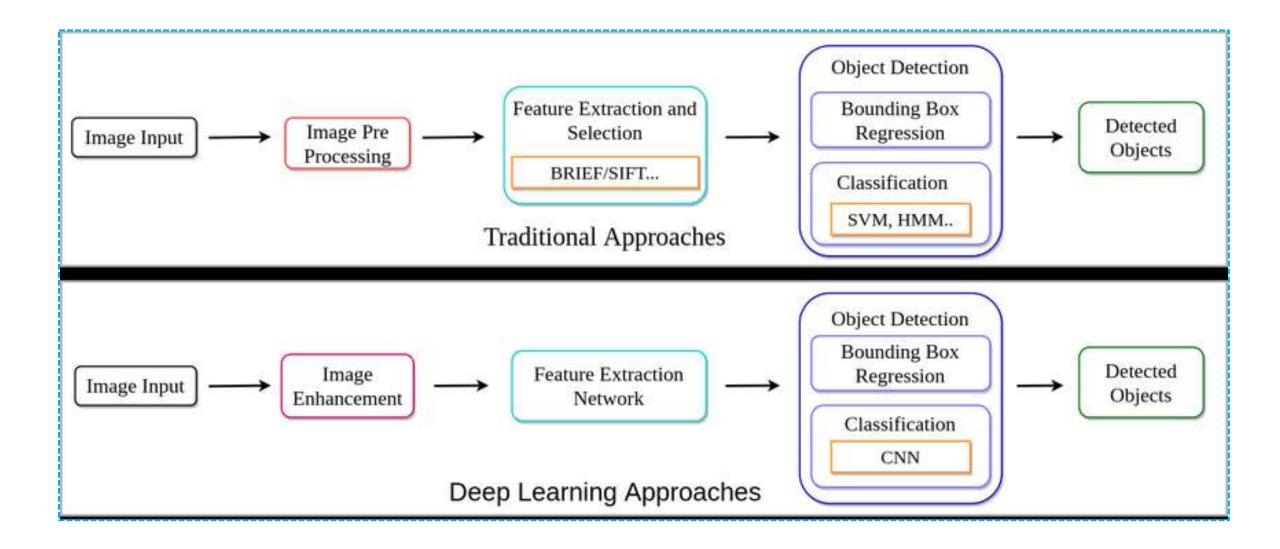
AI VIET NAM

@aivietnam.edu.vn

19

Dataset	tr	ain	valio	lation	trai	nval	test		
Dataset	images	objects	images	objects	images	objects	images	objects	
VOC-2007	2,501	6,301	2,510	6,307	5,011	12,608	4,952	14,976	
VOC-2012	5,717	13,609	5,823	13,841	11,540	27,450	10,991	-	
ILSVRC-2014	456,567	478,807	20,121	55,502	476,688	534,309	40,152		
ILSVRC-2017	456,567	478,807	20,121	55,502	476,688	534,309	65,500	2 <u>1</u>	
MS-COCO-2015	82,783	604,907	40,504	291,875	123,287	896,782	81,434	5 - 2	
MS-COCO-2017	118,287	860,001	5,000	36,781	123,287	896,782	40,670	-	
Objects365-2019	600,000	9,623,000	38,000	479,000	638,000	10,102,000	100,000	1,700,00	
OID-2020	1,743,042	14,610,229	41,620	303,980	1,784,662	14,914,209	125,436	937,327	

Traditional Vs. Deep Learning



A

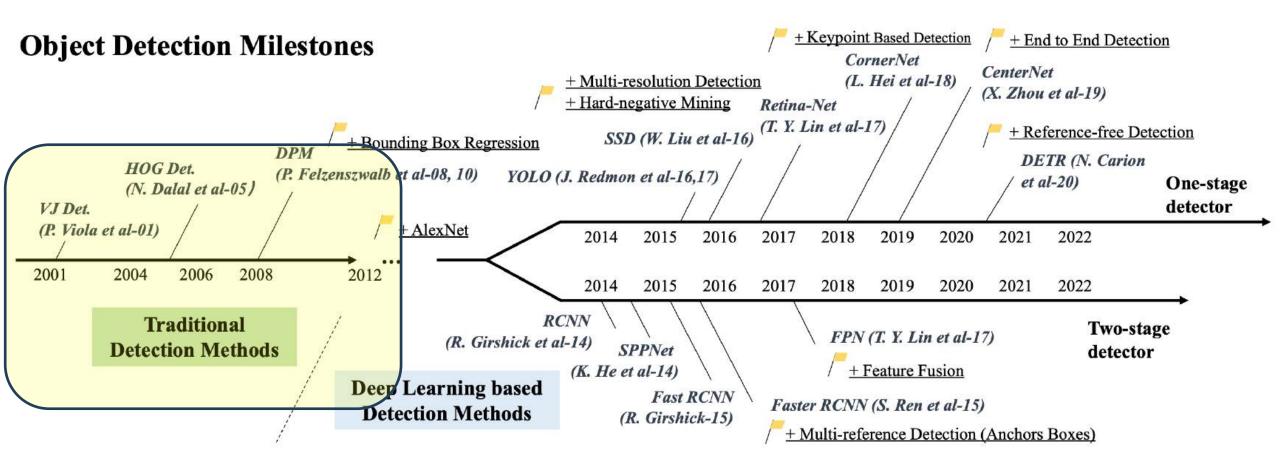
AI VIET NAM

Object Detection Milestones

Milestones: Traditional Detectors Viola Jones Detectors, SVM + HOG & DPM Milestones: CNN based Two-stage Detectors RCNN, SPPNet, Fast RCNN, Faster RCNN,...

Milestones: CNN based One-stage Detectors YOLO, SSD, RetinaNet, CornerNet, Center Net,... Milestones: Transformer for OD DETR, D-DETR, DINO,...

Object Detection Milestones



AI VIET NAM

@aivietnam.edu.vn

22

Outline

Introduction to Object Detection

Applications of Object Detection

Object Detection Milestones

Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

Traditional Detectors

Slides windows of differents sizes across image. At each location match window to face model

Extract Feature

Match Face Model Model Model Model Model MODE MO

Features: How to extract feature? Which features represent face well? Classifier:

Feature

How to build a model and classify features as face or not?

24

AI VIET NAM

25

What are good features?

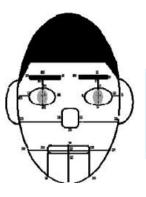
Interest Point (Edge, Corners, SIFT,..)

Facial Components (Templates)?

- Extreme Fast to Compute
- Millions of windows in an image

The key aspect in face recognition is detecting relevant features in human face like eyes, eyebrows, nose, lips. So how do we detect these features in real time/in an image ?

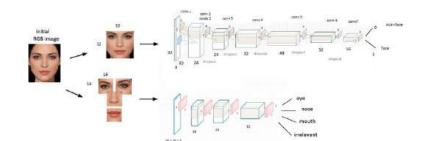
Methods for Face Detection



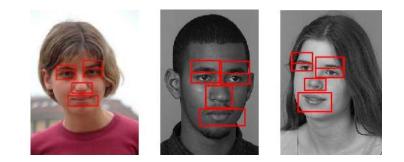
AI VIET NAM

@aivietnam.edu.vn

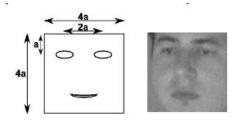
Knowledge BasedRule based (Ex: X must have eyes, x must have a nose)Too many rules and variables with this method



Appearance Based Learn the characteristics of a face. Example: CNN's Accuracy depends on training data (which can be scarce)



Feature Based Locate and extract structural features in the face Find a differential between facial and non facial regions in an image

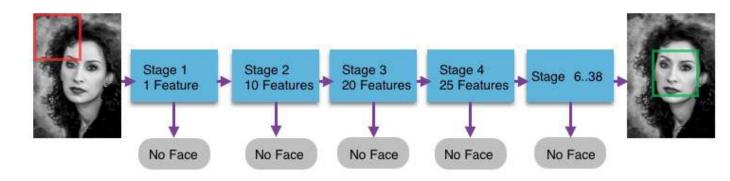


Template Using predefined templates for edge detection. Quick and easy A trade off for speed over accuracy

The key aspect in face recognition is detecting relevant features in human face like eyes, eyebrows, nose, lips. So how do we detect these features in real time/in an image ?

The answer is Haar Wavelets or Haar Features

The algorithm used is called as Viola-Jones Algorithm



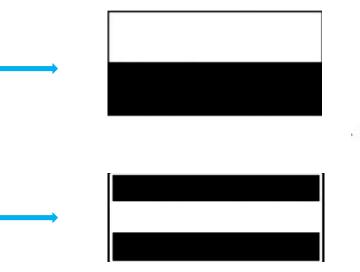
Although there are thousands of possible feature shapes that can be created, the two most common are **Edge Features** and **Line Features**.

Detect part of a face, **eyebrow**, naturally the shade of the pixels of on an eyebrow in an image will be darker and abruptly gets lighter (skin).

AI VIET NAM

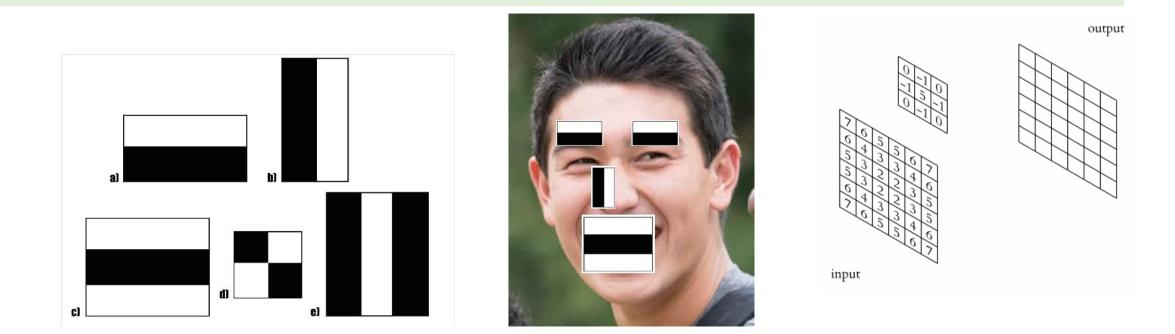
@aivietnam.edu.vn

Detect a **mouth**: naturally the shape of the lips region on your face go from light to dark to light again. For this, Line features prove to be the best.



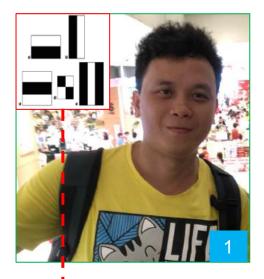
Edge Features

Running on a 700MHz Pentium III CPU, the detector was tens or even hundreds of times faster than other algorithms in its time under comparable detection accuracy



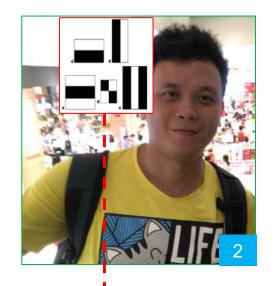
Viola-Jones uses 24*24 as base window size and calculates the above features all over the image shifting by 1 PX (Template + Feature). There are over 160,000 possible feature combinations that can fit into a 24x24 pixel image, and over 250,000 for a 28x28 image

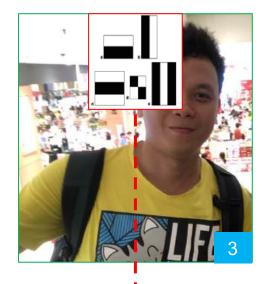
P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.

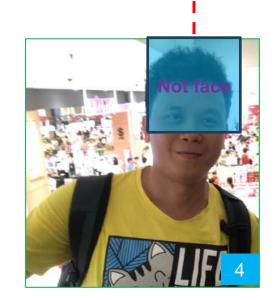


30

AI VIET NAM





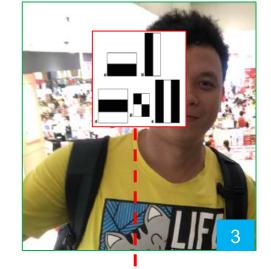


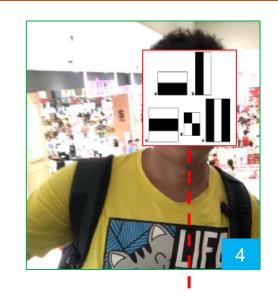
AI VIET NAM

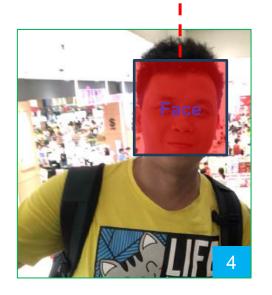
@aivietnam.edu.vn

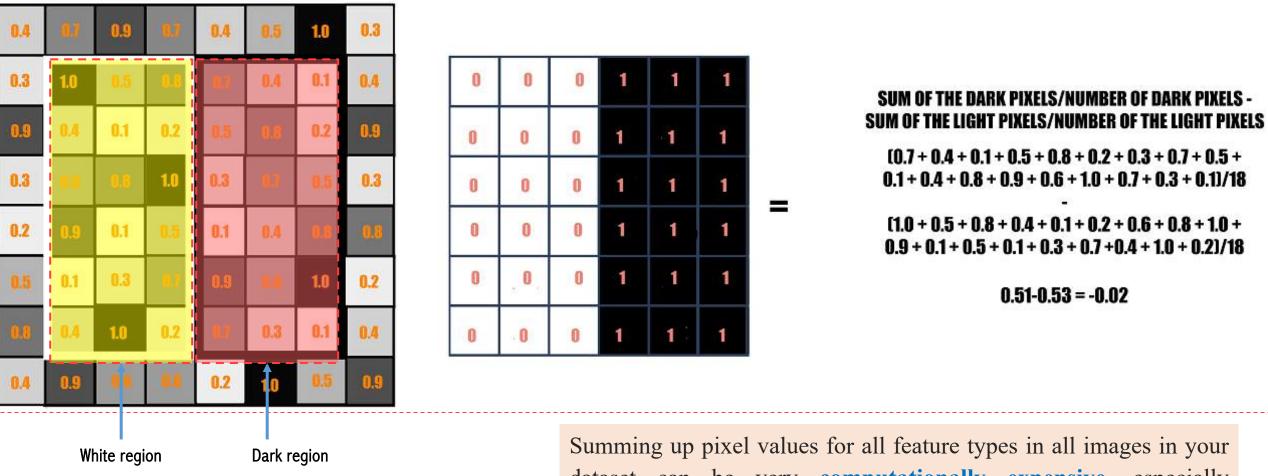
31











https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08

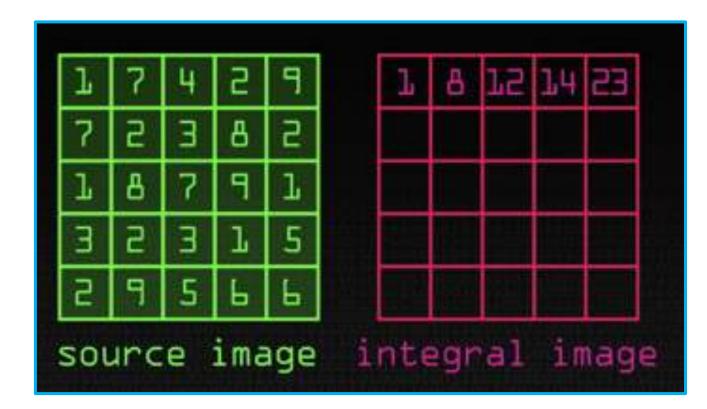
AI VIET NAM

@aivietnam.edu.vn

32

dataset can be very **computationally expensive**, especially depending on the resolution of your images.

Viola Jones Detectors : Integral Image

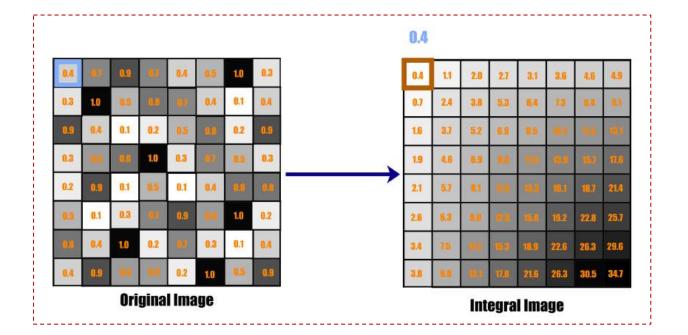


Each point in the **integral image** is a sum of the pixels above and left of the corresponding pixel in the source image

33

AI VIET NAM

Viola Jones Detectors : Integral Image

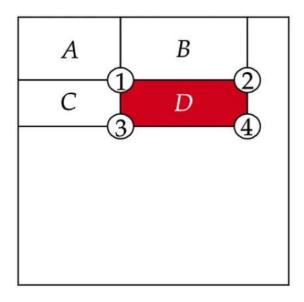


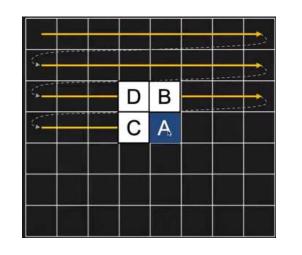
AI VIET NAM

@aivietnam.edu.vn

34

The value of the integral image at point 1 is the sum of the pixels in rectangle A
The value at point 2 is A + B
The value at point 3 is A + C
The value at point 4 is A + B + C + D.
Therefore, the sum of pixels in region D can simply be computed as : 4+1-(2+3).





Raster Scanning

@aivietnam.edu.vn

Viola Jones Detectors : Integral Image

Source Image Pixel Values Computed Integr											Com	tegral I	mage				
1	2	4	6	7	9	10	11		1	3	7	13	20	29	39	50	
21	2	2	4	3	2	1	1		22	26	32	42	52	63	74	86	
1	2	1	3	4	5	9	10		23	29	36	49	63	79	99	121	
1	2	7	8	9	2	27	1		24	32	46	67	90	108	155	178	
2	3	7	8	9	1	1	1		26	38	59	88	120	141	183	207	
1	3	2	2	2	7	22	21		27	42	65	96	1: #	Long	way		
21	7	3	9	10	11	17	18		48	70	96	136	18	1 +	2 +	4 +	6 + 7 + 21 + 2 + 2 + 4 + 3 + 1 + 2 + 1 +
1	1	1	4	9	8	7	2	1	49	72	101	145	15				2 + 7 + 8 + 9 = 90
																	+ 2 + 1 + 1 + 5 + 9 + 10 + 2 + 27 + 1 = 88
														Del	ta:	90 -	88 = 2
													#	Shor	t Wa	У	
													178	- 9	0 = 8	88	
	://medium.com/@aaronward6210/facial-detection-understanding- -jones-algorithm-116d1a9db218									Inder	stanc		Del	ta =	90 -	-88 = 2	

The trick is to compute an "integral image." Every pixel is the sum of its neighbors to the upper left.

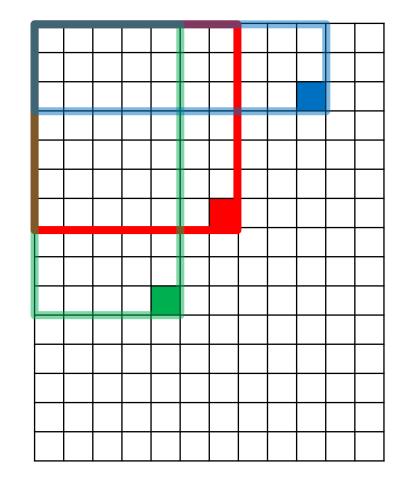
Sequentially compute using:

AI VIET NAM

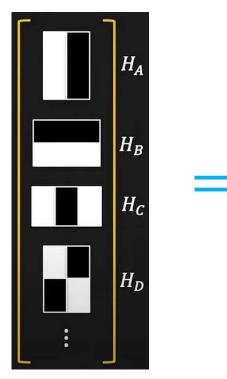
@aivietnam.edu.vn

36

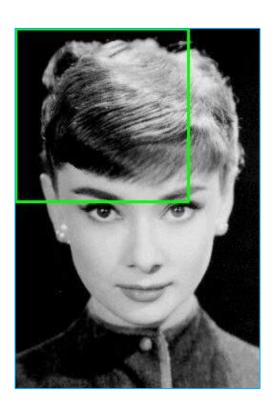
$$I(x, y) = I(x, y) + I(x, y - 1) - I(x - 1, y - 1)$$



Viola Jones Detectors : Harr Feature



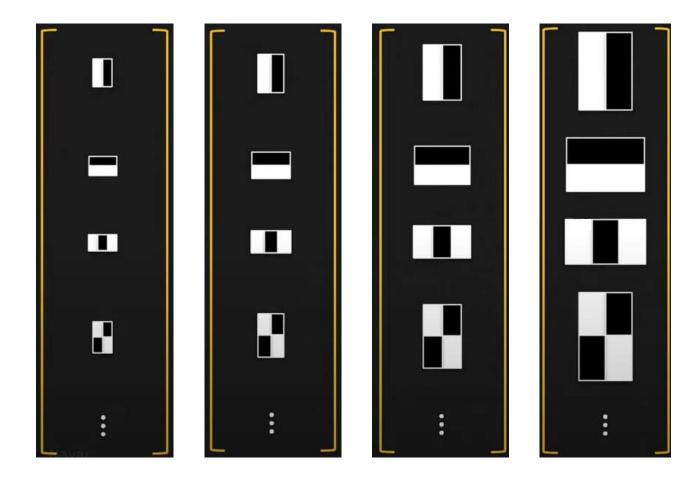
Haar Filters



AI VIET NAM

@aivietnam.edu.vn

Haar Features for Multiple Scales



AI VIET NAM

@aivietnam.edu.vn

38

$$V_A[i,j] = \sum_m \sum_n I[m-i,n-j]H_A[m,n]$$

Compute Haar Features at different scales to detect faces of different sizes

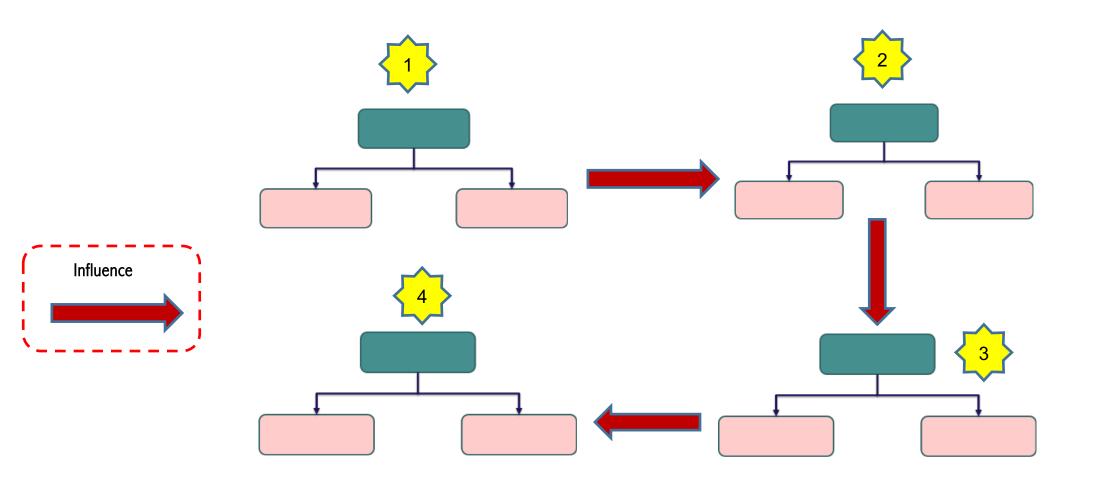
As stated previously there can be approximately 160,000 + feature values within a detector at 24*24 base resolution which need to be calculated. But it is to be understood that only a few set of features will be useful among all these features to identify a face.

Relevant feature Irrelevant feature

Feature detecting a vertical edge is useful detecting a nose but irrelevant detecting a lip.

Can we create a good classifier using just a small subset of all possible features?

AdaBoost: FOREST OF STUMP



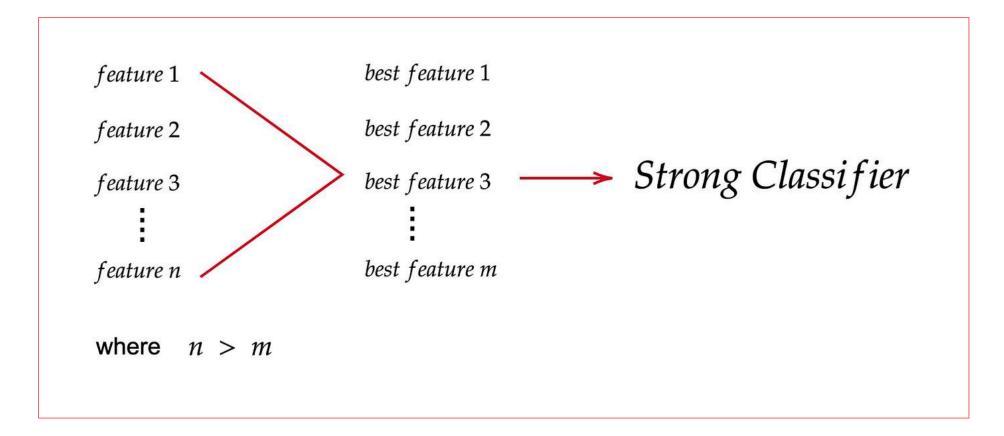
AI VIET NAM

@aivietnam.edu.vn

39

A

Adaboost for Face Detection



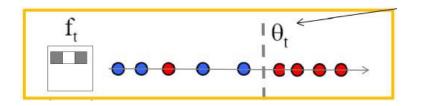
The goal of using the AdaBoost algorithm is to extract the best features from n features

40

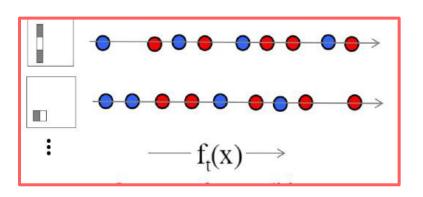
AI VIET NAM

@aivietnam.edu.vn

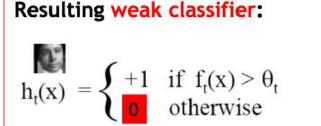
AI VIET NAM @aivietnam.edu.vn AdaBoost for Feature+Classifier Selection



41



Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error $\boldsymbol{\theta}^t$ is a threshold for classifier $\quad \boldsymbol{h}^t$



For next round, reweight the examples according to errors, choose another filter/threshold combo. Each weak classifier works on exactly one rectangle feature.

- · Each weak classifier has 3 associated variables
- its threshold θ
 its polarity p
 - h(x) = 1 if $p^{+}f(x) < p\theta$, else 0
 - se 0 does not actually

The code

compute h.

3. its weight α

used for the combination step

- The polarity can be 0 or 1
- The weak classifier computes its one feature f
 - When the polarity is 1, we want $f > \theta$ for face
 - When the polarity is 0, we want $f < \theta$ for face
- The weight will be used in the final classification by AdaBoost.

1. Initialized weights for each training example

- 2. Normalized all the weights
- 3. Then we selected the best weak classifier based on the weighted error of the training examples
- 4. Then updated the weights according to the error of the chosen best weak classifier
- 5. Repeated steps 2–4 N times, where N is the desired number of weak classifiers

AdaBoost Algorithm modified by Viola Jones

- Given example images (x1, y1),..., (xn, yn) where yi = 0, 1 for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$. sum over training samples
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

NOTE: Our code uses equal weights for all samples

 $\{x_1, ..., x_n\}$

For T rounds:

meaning we will construct T weak classifiers

Find the best threshold and polarity for each feature, and return error.

Re-weight the examples: Incorrectly classified -> more weight Correctly classified -> less weight

AI VIET NAM Calivietnam.edu.vn AdaBoost for Feature+Classifier Selection

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights w_{1,i} = ¹/_{2m}, ¹/_{2l} for y_i = 0, 1 respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow rac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

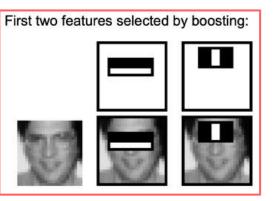
 $w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$

- where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 \epsilon_t}$.
- The final strong classifier is:

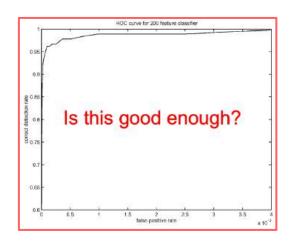
$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

The AdaBoost algorithm for classifier learning. Each round t of boosting selects one feature from the 180,000 potential feature



This feature combination can yield 100% detection rate and 50% false positive rate



A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084

The Cascade Classifier

A series of classifiers are applied to every sub-window. These classifiers are simple decision trees :

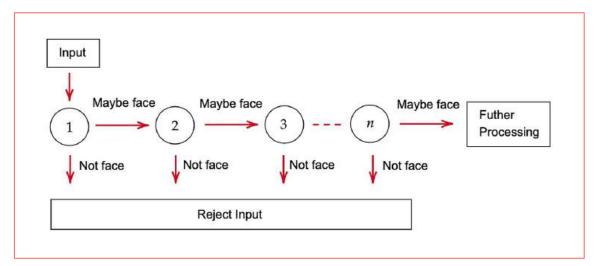
•if the first classifier is positive, we move on to the second

•if the second classifier is positive, we move on to the third.

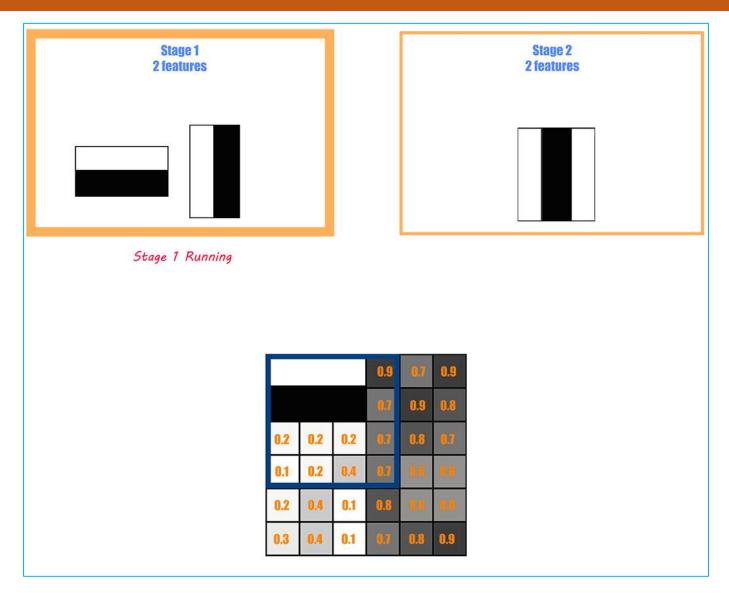
•Any negative result at some point leads to a rejection of the sub-window as potentially containing a face

In an image, most of the image is a non-face region

The key idea is to reject sub-windows that do not contain faces while identifying regions that do. Since the task is to identify properly the face, we want to minimize the false negative rate, i.e the sub-windows that contain a face and have not been identified as such.



The Cascade Classifier

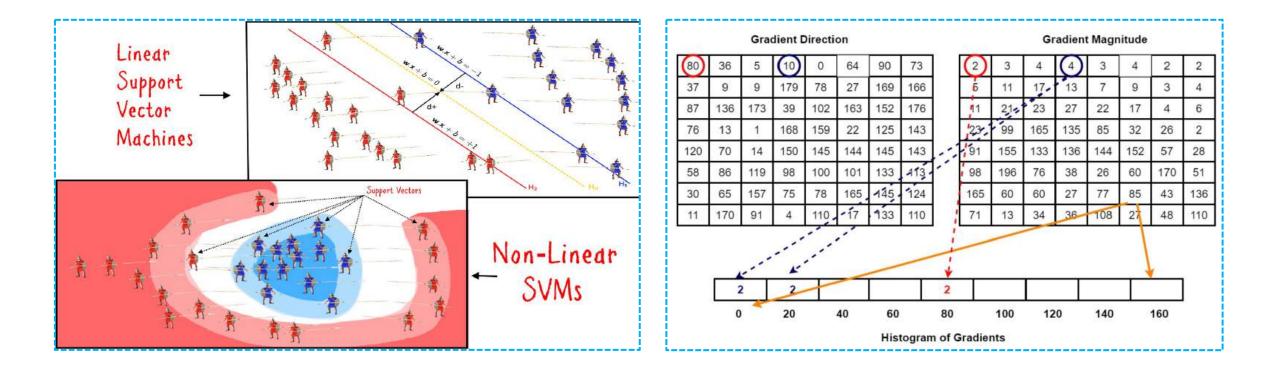


https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08

Summary

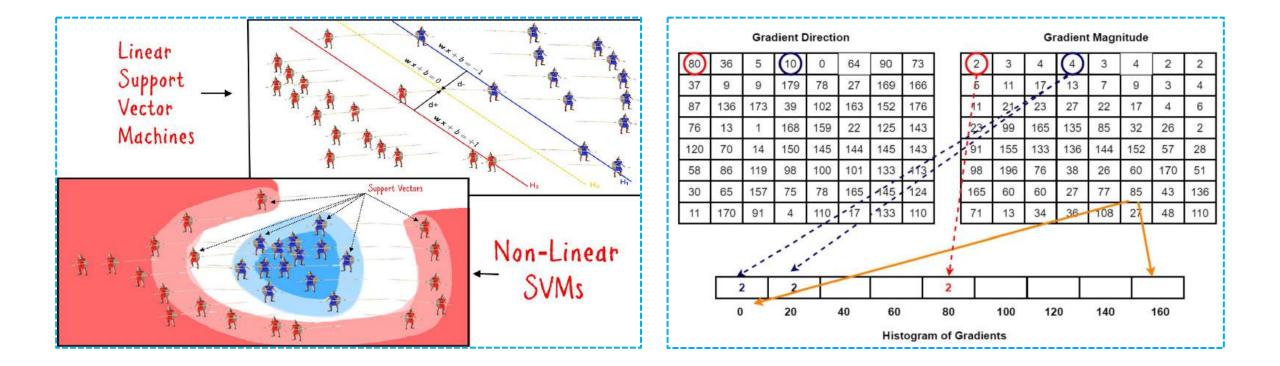


SVM and HOG for Object Detection



AI VIET NAM

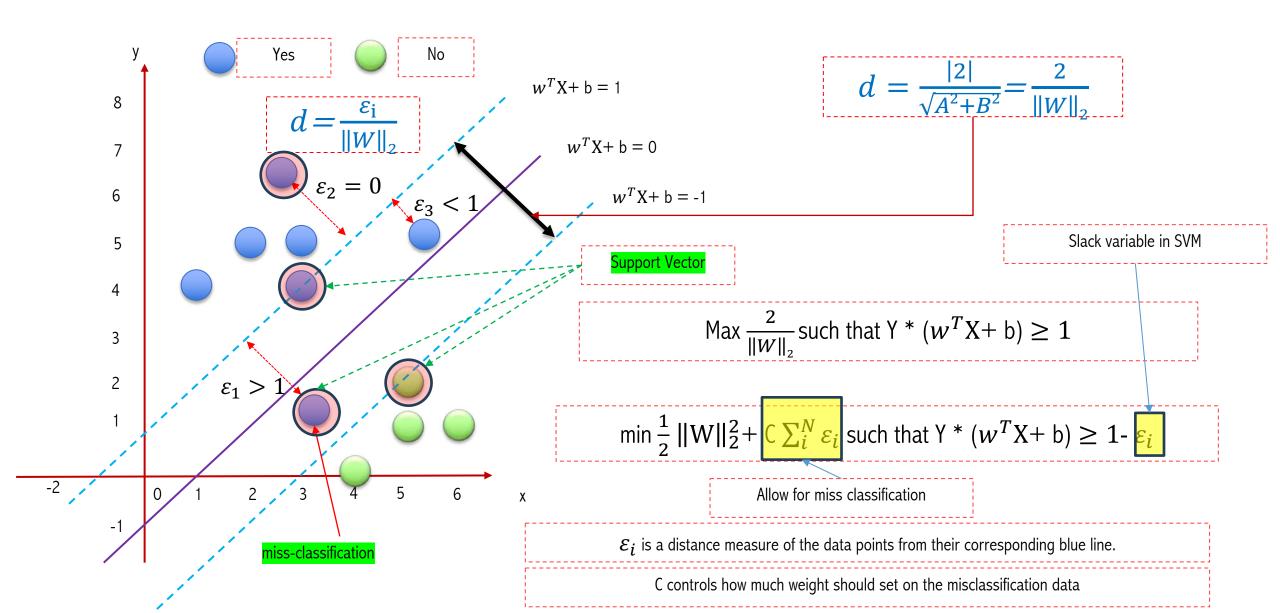
@aivietnam.edu.vn



AI VIET NAM

@aivietnam.edu.vn

Support Vector Machine



AI VIET NAM

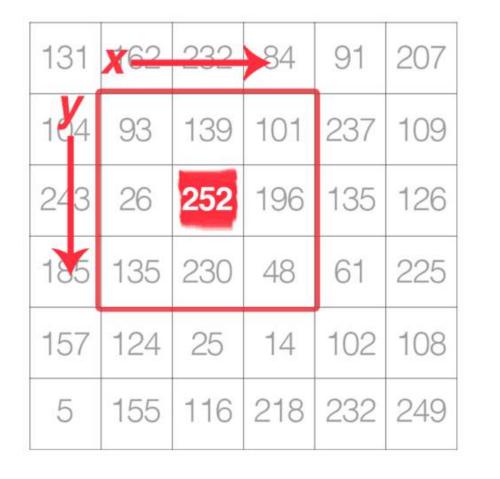
@aivietnam.edu.vn

Histogram of Oriented Gradient

An image gradient is a directional change in the intensity or color in an image. The gradient of the image is one of the fundamental building blocks in image processing. For example, the Canny edge detector uses image gradient for edge detection.

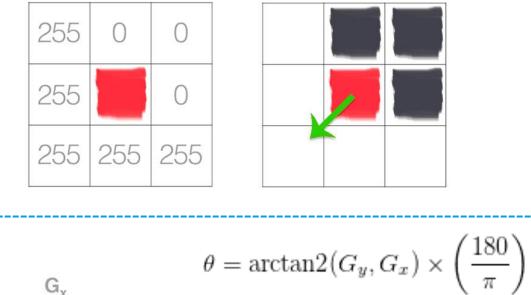
G

G.



AI VIET NAM

@aivietnam.edu.vn



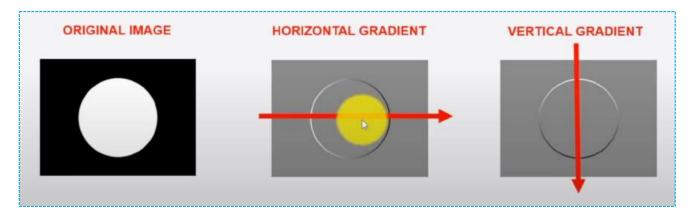
$$G_{x} = I(x + 1, y) - I(x - 1, y)$$

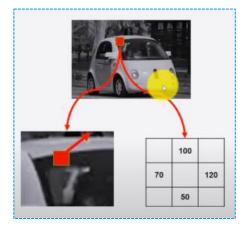
$$G_{y} = I(x, y + 1) - I(x, y - 1)$$

$$G_{y} = I(x, y + 1) - I(x, y - 1)$$

Histogram of Oriented Gradient

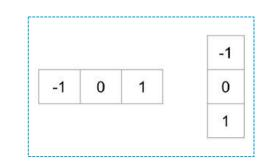
An image gradient is a directional change in the intensity or color in an image. The gradient of the image is one of the fundamental building blocks in image processing. For example, the Canny edge detector uses image gradient for edge detection.





AI VIET NAM

@aivietnam.edu.vn

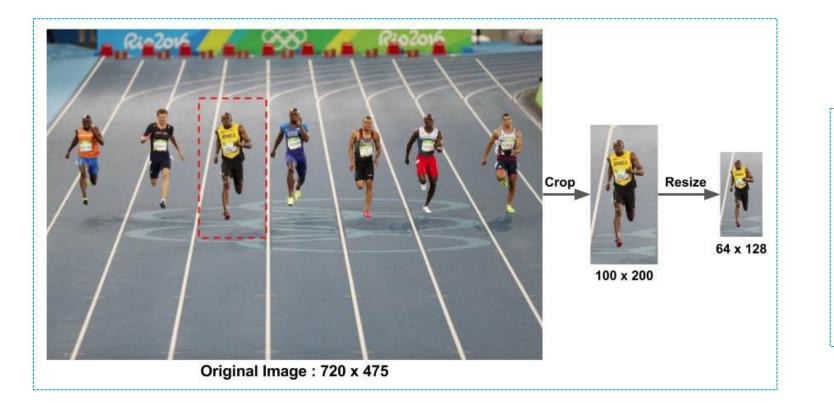


Gradient Magnitude = $\sqrt{(50)^2 + (50)^2} = 70.1$ Gradient Angle =tan⁻¹(50/50) = 45°

52

Histogram of Oriented Gradient

Step 1: preprocessing and compute gradient



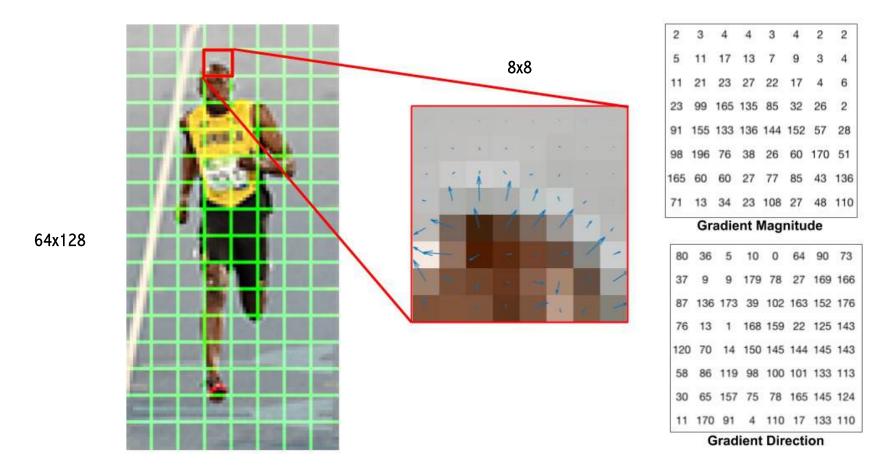
Left : Absolute value of x-gradient. Center : Absolute value of ygradient. Right : Magnitude of gradient.

In the case of the HOG feature descriptor, the input image is of size $64 \times 128 \times 3 = 24576$ and the output feature vector is of length 3780

Step 2: Calculate Histogram of Gradients in 8×8 cells

AI VIET NAM

@aivietnam.edu.vn



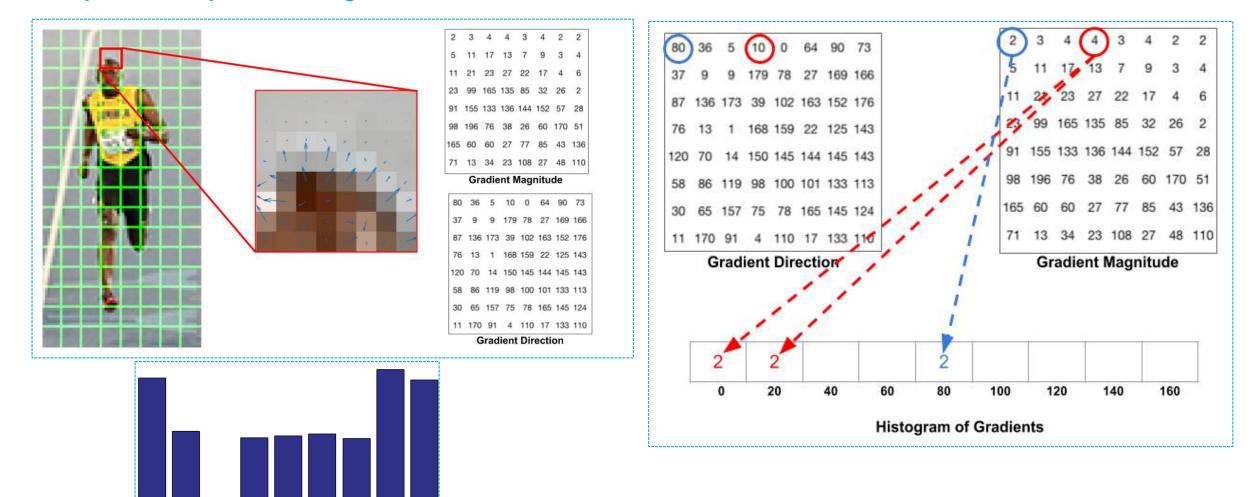
Histogram of Oriented Gradient

Step 3: Compute Histogram of Oriented Gradient

AI VIET NAM

@aivietnam.edu.vn

2 3

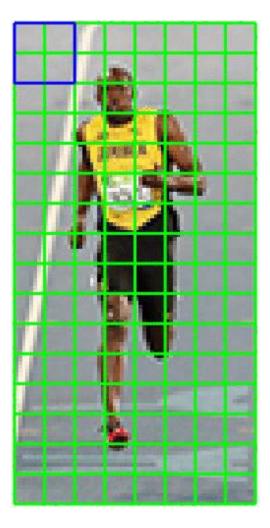


Histogram of Oriented Gradient

Step 4: 16×16 Block Normalization

AI VIET NAM

@aivietnam.edu.vn



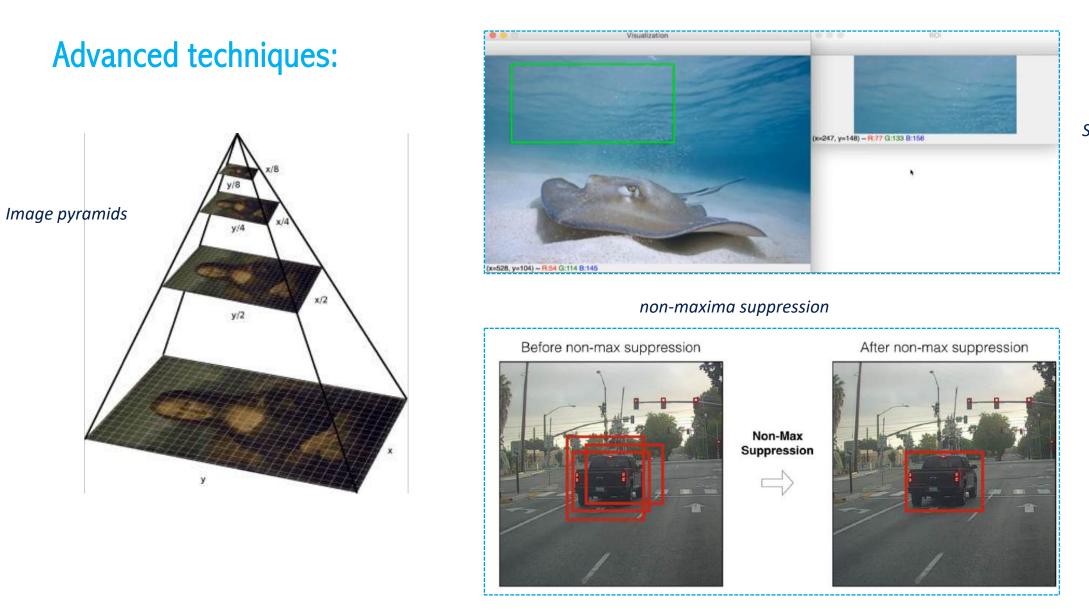
Gradients for highlighted Bock (having 36 features): $V = [a_1, a_2, a_3, ..., a_{36}]$

Root of the sum of squares:

$$k = \sqrt{a_1^2 + a_2^2 + a_3^2 + \ldots + a_{36}^2}$$

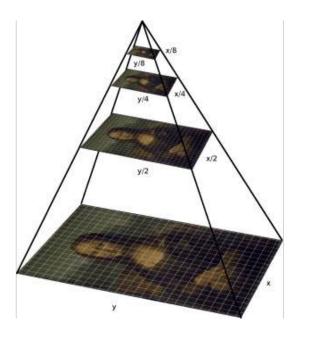
Normalized vector =
$$\left(\frac{a_1}{k}, \frac{a_2}{k}, \frac{a_3}{k}, \dots, \frac{a_{36}}{k}\right)$$

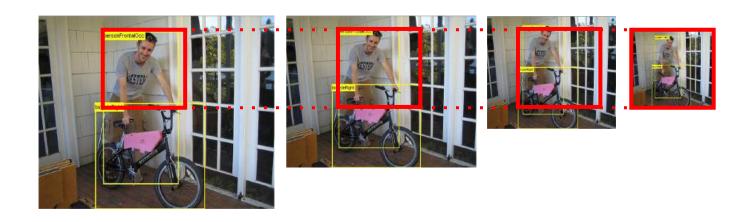
Normalized vectors created for all 105 blocks, having 36 features each image Feature Descriptor: 1 x 3780 matrix



Sliding Window

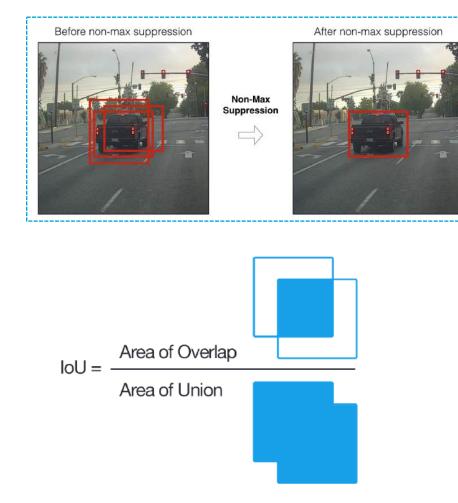
Image pyramids





Smaller objects

Sliding Window – Location Image Pyramid - Scale Larger objects



AI VIET NAM

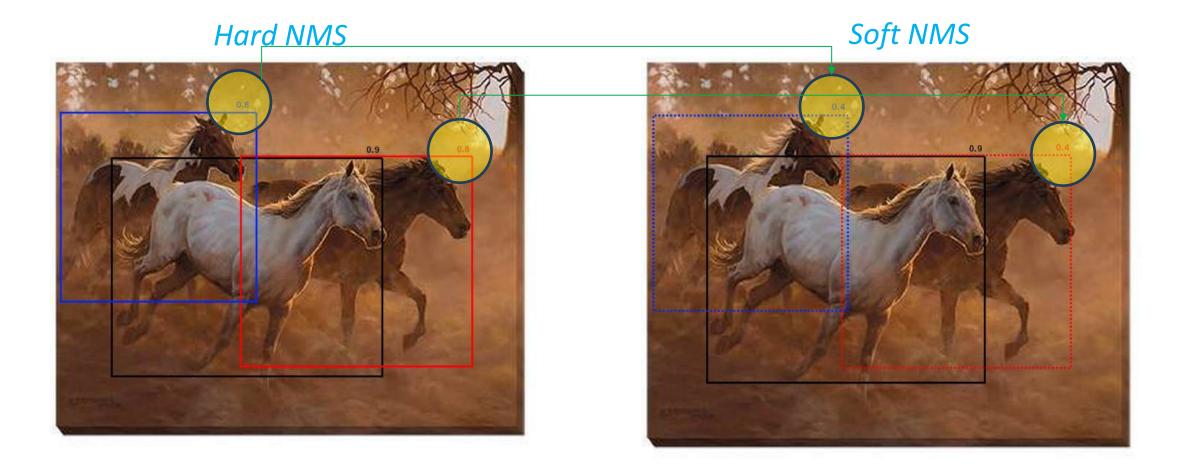
@aivietnam.edu.vn

58

Non-maxima suppression

Algo	rithm 1 Non-Max Suppression
1: p	procedure NMS(B,c)
2:	$B_{nms} \leftarrow \emptyset$ Initialize empty set
3:	for $b_i \in B$ do \Rightarrow Iterate over all the boxes Take boolean variable and set it as false. This variable indicates whether b(
4:	$discard \leftarrow \mathrm{False}$ should be kept or discarded
5:	${f for} \ b_j \in B \ {f do}$ Start another loop to compare with b(i)
6:	if $ ext{same}(b_i,b_j) > oldsymbol{\lambda_{nms}}$ then If both boxes having same IOU
<mark>7</mark> :	if $score(c, b_j) > score(c, b_i)$ then
8:	$discard \leftarrow ext{True}$ Compare the scores. If score of b(i) is less than that of b(j), b(i) should be discarded, so set the flag to
9:	if not discard then True. Once b(i) is compared with all other boxes and still the
10:	$B_{nms} \leftarrow B_{nms} \cup b_i $
11:	return B_{nms} Do the same procedure for remaining boxes and return the final list

Non-maxima suppression



Non-maxima suppression

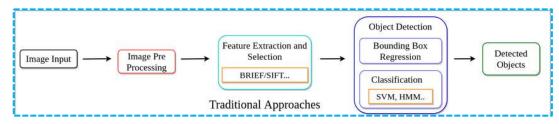
Hard NMS

1: p	procedure NMS(B,c)
2:	$B_{nms} \leftarrow \emptyset$ Initialize empty set
3:	for $b_i \in B$ do $ wideta$. Iterate over all the boxes. Take boolean variable and set it as false. This variable indicates whether b
4:	$discard \leftarrow \mathrm{False}$ should be kept or discarded
5:	for $b_j \in B$ do Start another loop to compare with b(i)
6:	if $ ext{same}(b_i,b_j) > oldsymbol{\lambda_{nms}}$ then $^{ ext{If both boxes having same IOU}}$
7:	if $score(c, b_j) > score(c, b_i)$ then
8:	$discard \leftarrow ext{True}$ $ ext{Compare the scores. If score of b(i) is less than the of b(j), b(i) should be discarded, so set the flag to$
9:	if not discard then True. Once b(i) is compared with all other boxes and still the
10:	$B_{nms} \leftarrow B_{nms} \cup b_i {}_{ ext{add it to the final list.}}^{ ext{discarded flag is False, then b(i) should be considered. So}$
11:	return B_{nms} Do the same procedure for remaining boxes and return the final list

Soft NMS

Input : $\mathcal{B} = \{b_1,, b_N\}, S = \{s_1,, s_N\}, N_t$ \mathcal{B} is the list of initial detection boxes S contains corresponding detection scores N_t is the NMS threshold
begin
$\mid \mathcal{D} \leftarrow \{\}$
while $\mathcal{B} \neq empty$ do
$m \leftarrow \operatorname{argmax} S$
$\mathcal{M} \leftarrow b_m$
$\mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{M}; \mathcal{B} \leftarrow \mathcal{B} - \mathcal{M}$
for b_i in \mathcal{B} do
$ \begin{array}{ c c c c c } \textbf{if} & iou(\mathcal{M},b_i) \geq N_t \textbf{ then} \\ & \mid \mathcal{B} \leftarrow \mathcal{B} - b_i; \mathcal{S} \leftarrow \mathcal{S} - s_i \\ \textbf{end} & \textbf{NMS} \end{array} $
$\begin{bmatrix} s_i \leftarrow s_i f(iou(\mathcal{M}, b_i)) \\ \text{end} \end{bmatrix}$
end
return \mathcal{D}, S
end

Most traditional object detection algorithms like Viola–Jones, and Histogram of Oriented Gradients (HOG) are relied on extracting handcrafted features like edges, corners, gradients from the image and classical machine learning algorithms.



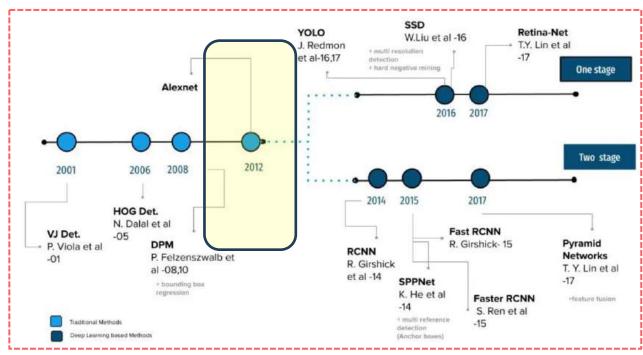
AI VIET NAM

@aivietnam.edu.vn

61

The traditional computer vision approaches were in the game until 2010.

From 2012, a new era of convolutional neural networks started when AlexNet (an image classification network) won the ImageNet Visual Recognition challenge 2012. The accuracy of 84.7% as compared to the second-best with an accuracy of 73.8%.



Outline

Introduction to Object Detection

Applications of Object Detection

Object Detection Milestones

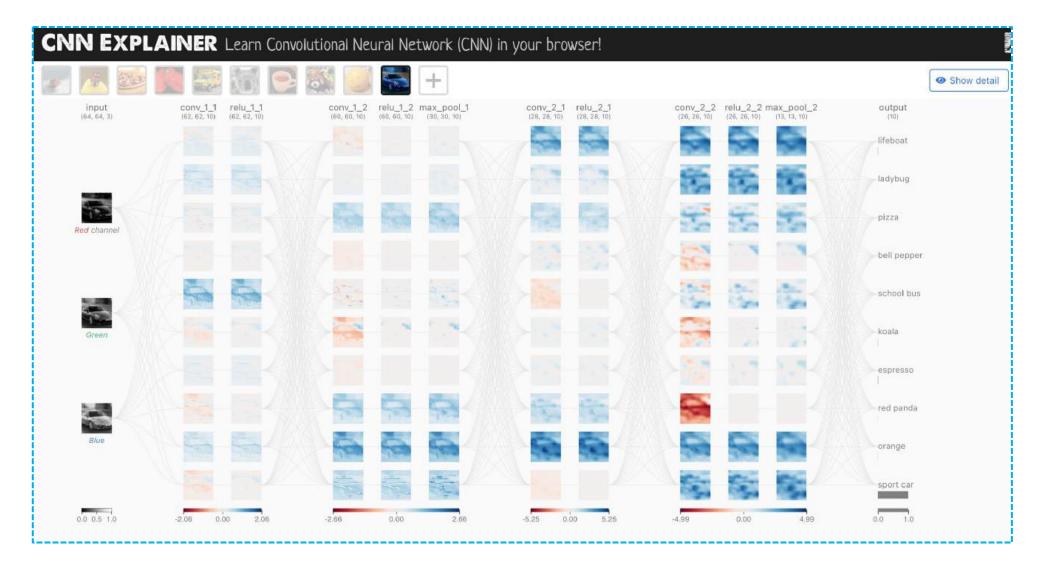
Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

Convolutional Neural Network



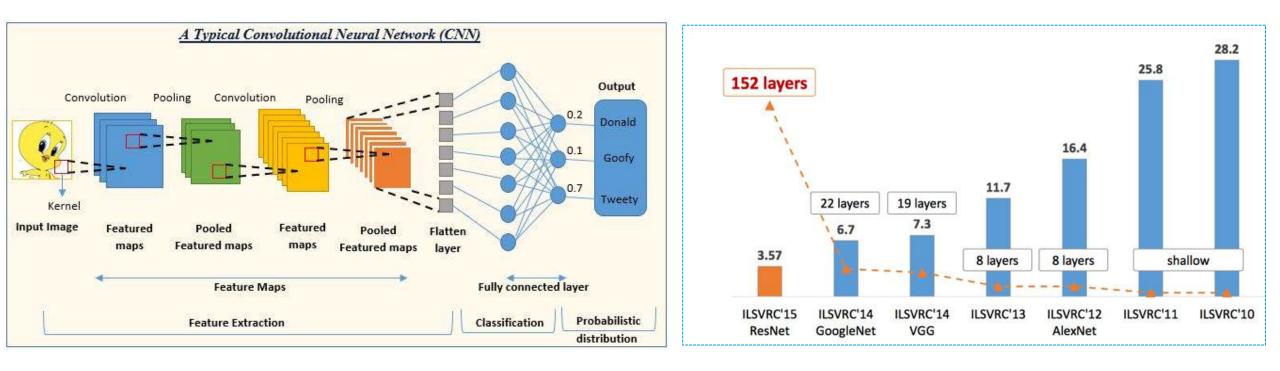
https://poloclub.github.io/cnn-explainer/

A

AI VIET NAM

@aivietnam.edu.vn

Convolutional Neural Network



AI VIET NAM

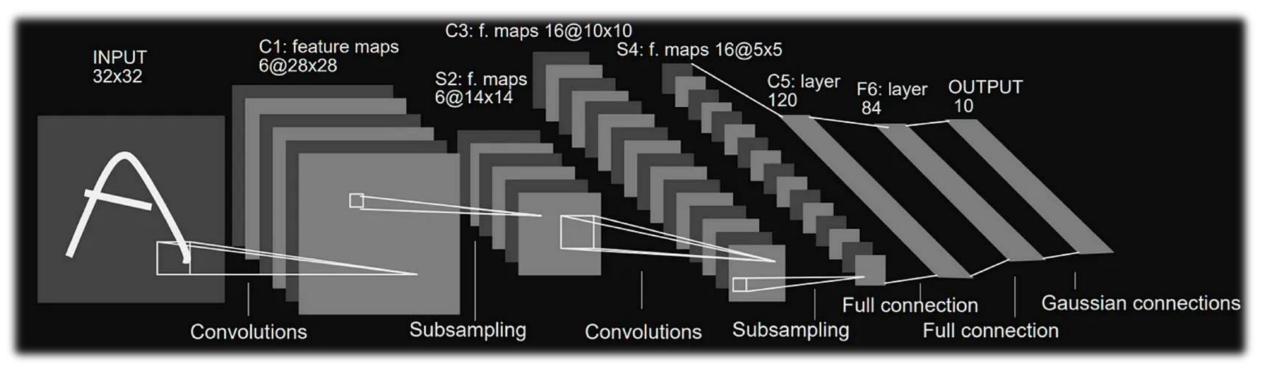
@aivietnam.edu.vn

64

Image Classifier (IF)

LetNet for Image Classification

'Hello World' in the domain of Convolution Neural Networks

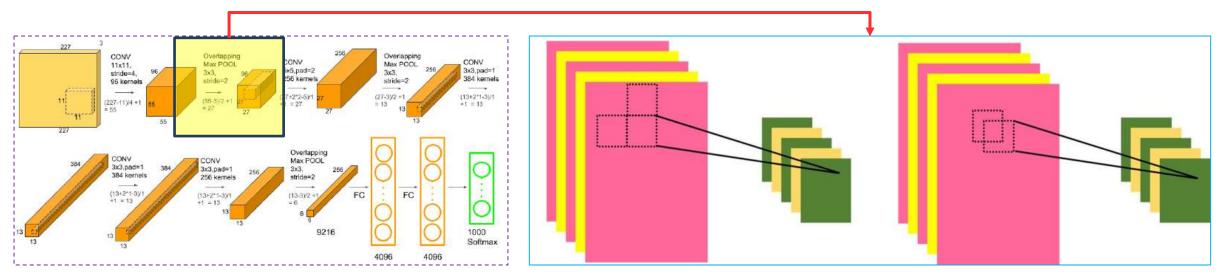


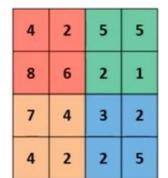
handwritten and machine-printed character recognition

It was introduced by Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner in 1998

AlexNet for Image Classification

New: Overlapping Max Pooling

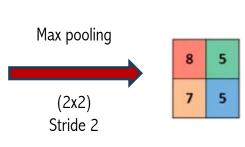




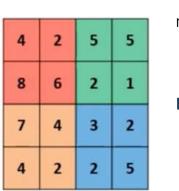
AI VIET NAM

@aivietnam.edu.vn

66



This overlapping nature of pooling helped reduce the top-1 error rate by 0.4% and top-5 error rate by 0.3% respectively when compared to using non-overlapping pooling windows of size 2×2 with a stride of 2 that would give same output dimensions.



Overlap max- pooling

(2x2)

Stride 1

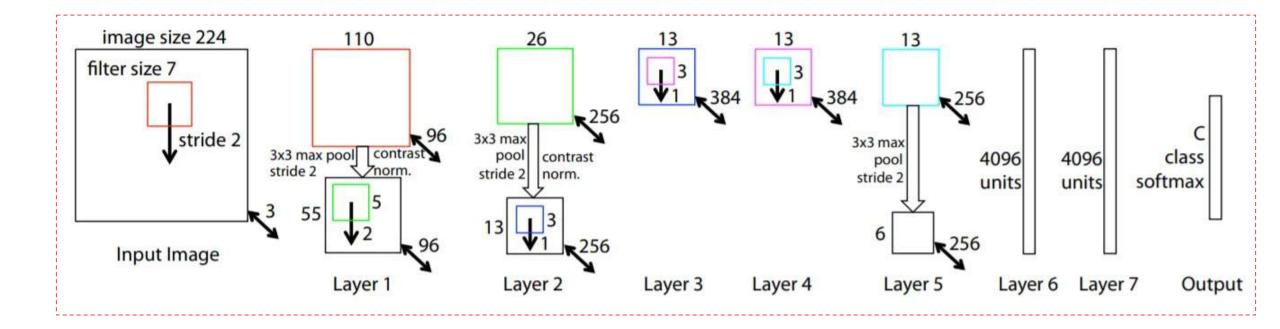
8	6	5
8	6	3
7	4	5

AlexNet Summary

7	AI VIET NAM
	 @aivietnam.edu.vn

Layer	# filters /	Filter size	Stride	Padding	Size of feature	Activation	LeNet	AlexNet
Luyer	neurons	1 11(61 3126	Stride	r adding	map	function	Image: 28 (height) × 28 (width) × 1 (channel)	Image: 224 (height) × 224 (width) × 3 (channels)
Input	-	-	-	-	227 x 227 x 3		↓ ↓	
							Convolution with 5×5 kernel+2padding:28×28×6	
Conv 1	96	11 x 11	4		55 x 55 x 96	ReLU	sigmoid	ReLu
Max Pool 1	-	3 x 3	2	_	27 x 27 x 96	-	Pool with 2×2 average kernel+2 stride: 14×14×6	Pool with 3×3 max. kernel+2 stride: 26×26×96
			_				Convolution with 5×5 kernel (no pad):10×10×16	V Convolution with 5×5 kernel+2 pad:26×26×256
Conv 2	256	5 x 5	1	2	27 x 27 x 256	ReLU	sigmoid	ReLu
Max Pool 2	-	3 x 3	2	-	13 x 13 x 256	-	Pool with 2×2 average kernel+2 stride: 5×5×16	Pool with 3×3 max.kernel+2stride:12×12×256
Widx P 001 2		57.5	£		13 × 13 × 230		flatten	
Conv 3	384	3 x 3	1	1	13 x 13 x 384	ReLU	Dense: 120 fully connected neurons	Convolution with 3×3 kernel+1 pad:12×12×384
Comul	284	2 4 2	1	1	12 4 12 4 284	ReLU	🗸 sigmoid	√ ReLu
Conv 4	384	3 x 3	1	1	13 x 13 x 384	ReLU	Dense: 84 fully connected neurons	Convolution with 3×3 kernel+1 pad:12×12×384
Conv 5	256	3 x 3	1	1	13 x 13 x 256	ReLU	√ sigmoid	√ ReLu
and the second second		10000000000000000000000000000000000000					Dense: 10 fully connected neurons	Convolution with 3×3 kernel+1 pad:12×12×256
Max Pool 3	-	3 x 3	2	-	6 x 6 x 256	-	V	ReLu
Dropout 1	rate = 0.5	-	-	-	6 x 6 x 256	-	Output: 1 of 10 classes	Pool with 3×3 max.kernel+2stride:5×5×256
								√ flatten
Fully Connected 1		-	-	-	4096	ReLU		Dense: 4096 fully connected neurons
								√ ReLu, dropout p=0.5 Dense: 4096 fully connected neurons
Dropout 2	rate = 0.5	-	•	-	4096	-		$\sqrt{\text{ReLu, dropout p=0.5}}$
Fully Connected 2	-	-	-	-	4096	ReLU		Dense: 1000 fully connected neurons
Fully Connected 3	-	-	-	-	1000	Softmax		Output: 1 of 1000 classes
							B{	

ZFNet for Image Classification



By visualizing the convolutional network, ZFNet become the Winner of ILSVLC 2013 in image classification by fine-tuning the AlexNet invented in 2012

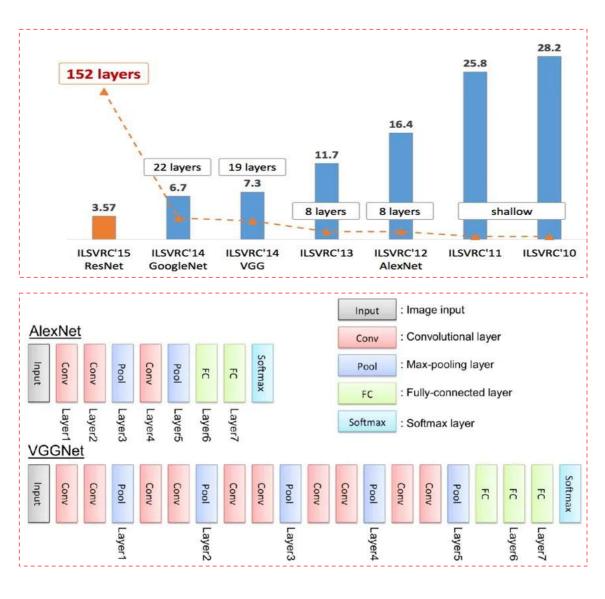
AI VIET NAM

@aivietnam.edu.vn

68

ZFNet was invented by Rob Fergus and Matthew D. Zeiler

VGGNet for Image Classification



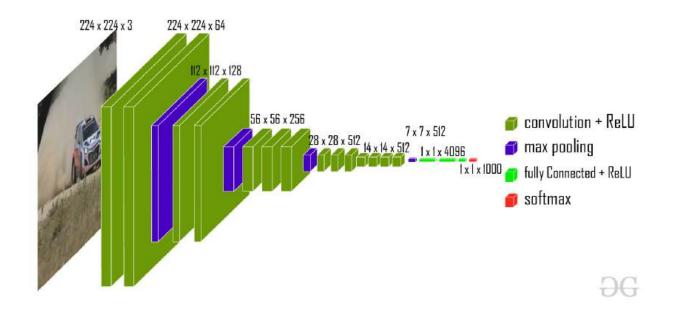
AI VIET NAM

@aivietnam.edu.vn

69

The full name of VGG is the **Visual Geometry Group**, which belongs to the Department of Science and Engineering of Oxford University.

The original purpose of VGG's research on the depth of convolutional networks is to understand how the depth of convolutional networks affects the accuracy and accuracy of large-scale image classification and recognition.



Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	224 x 224 x 3		-	-
1	2 X Convolution	64	224 x 224 x 64	3x3	1	relu
	Max Pooling	64	112 x 112 x 64	3x3	2	relu
3	2 X Convolution	128	112 x 112 x 128	3x3	1	relu
	Max Pooling	128	56 x 56 x 128	3x3	2	relu
5	2 X Convolution	256	56 x 56 x 256	3x3	1	relu
	Max Pooling	256	28 x 28 x 256	3x3	2	relu
7	3 X Convolution	512	28 x 28 x 512	3x3	1	relu
	Max Pooling	512	14 x 14 x 512	3x3	2	relu
10	3 X Convolution	512	14 x 14 x 512	3x3	1	relu
	Max Pooling	512	7 x 7 x 512	3x3	2	relu
13	FC	-	25088	. 	35	relu
14	FC	(4096	-		relu
15	FC	1	4096	.	<u></u>	relu
Output	FC		1000		R .	Softmax

AI VIET NAM

@aivietnam.edu.vn

70

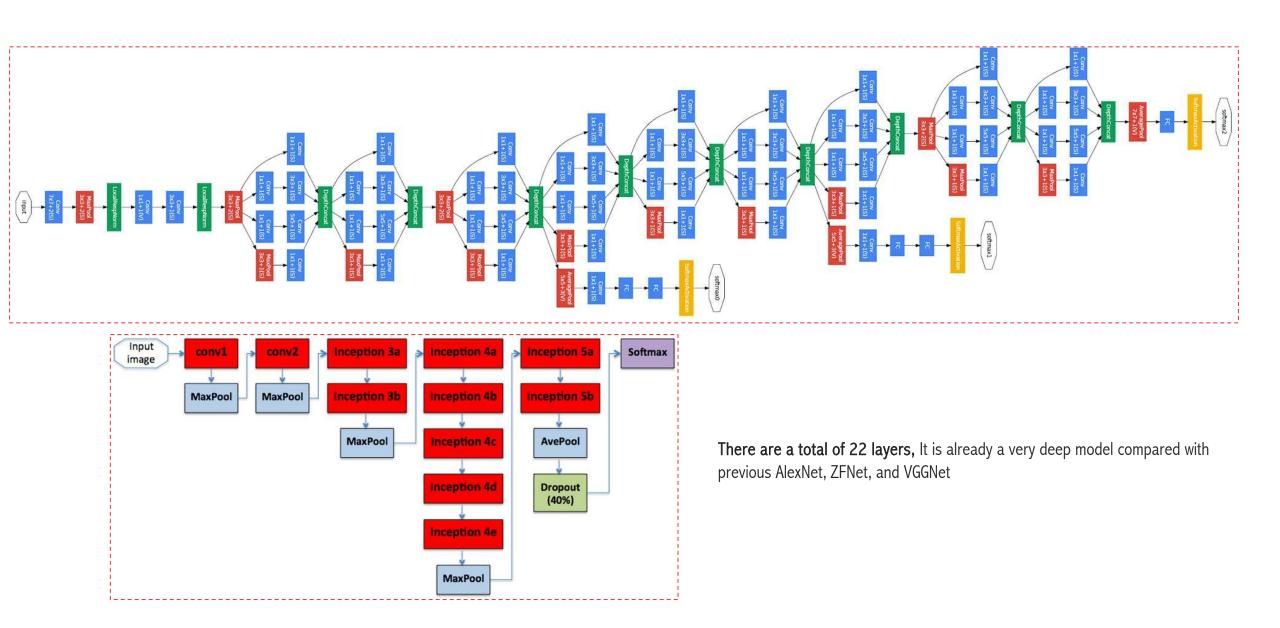
	Softmax
fc8	FC 1000
fc7	FC 4096
fc6	FC 4096
	Pool
conv5-3	3 × 3 conv, 512
conv5-2	3 × 3 conv, 512
conv5-1	3 × 3 conv, 512
	Pool
conv4-3	3 × 3 conv, 512
conv4-2	3 × 3 conv, 512
conv4-1	3 × 3 conv, 512
	Pool
conv3-2	3 × 3 conv, 256
conv3-1	3 × 3 conv, 256
	Pool
conv2-2	3 × 3 conv, 128
conv2-1	3 × 3 conv, 128
	Pool
conv1-2	3 × 3 conv, 64
conv1-1	3 × 3 conv, 64
	Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3 × 3 conv, 512
Pool
3 × 3 conv, 512
Pool
3 × 3 conv, 256
3 × 3 conv, 256
Pool
3 × 3 conv, 128
3 × 3 conv, 128
Pool
3 × 3 conv, 64
<u>3 × 3 conv, 64</u>
Input

VGG16

VGG19

GoogleLetNet for Image Classification

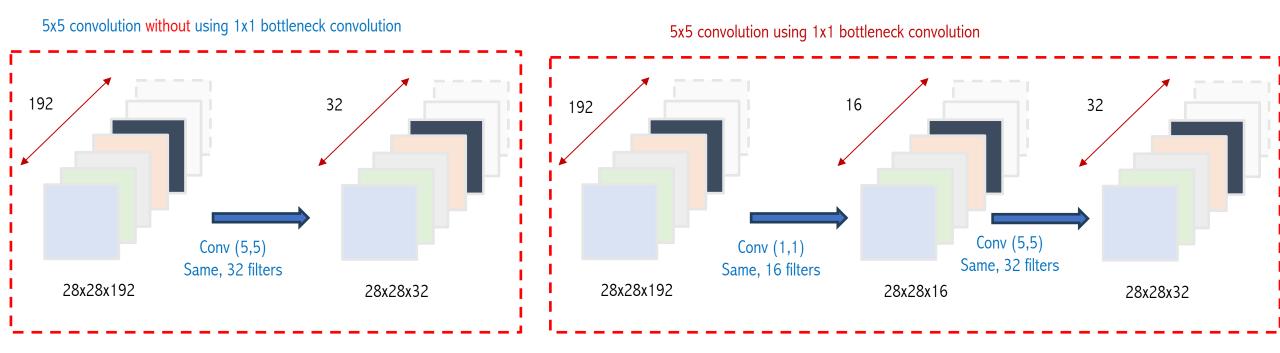


AI VIET NAM

@aivietnam.edu.vn

GoogleLetNet for Image Classification

New: 1×1 convolution is used as a dimension reduction module to reduce the computation



Number of parameters =28x28 (size of the input image)x 5x5(size of filter) x 192 (channels) x 32(no of filters)

= 120,422,400 operations

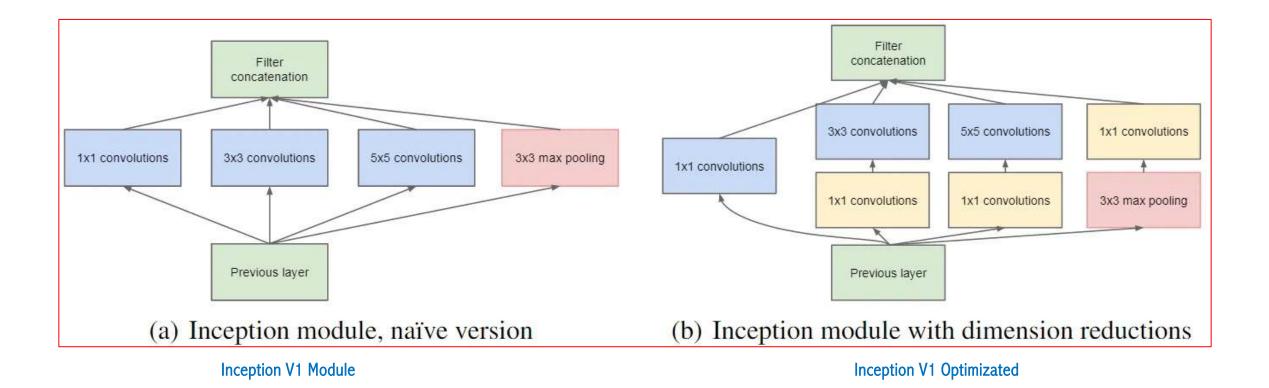
Number of parameters = 28 x 28 x 16 x 192 + 28 x 28 x 32 x 5 x 5 x 16 ~ 12.4M

As the authors said that the idea of the name "Inception" comes from famous internet meme below: WE NEED TO GO DEEPER

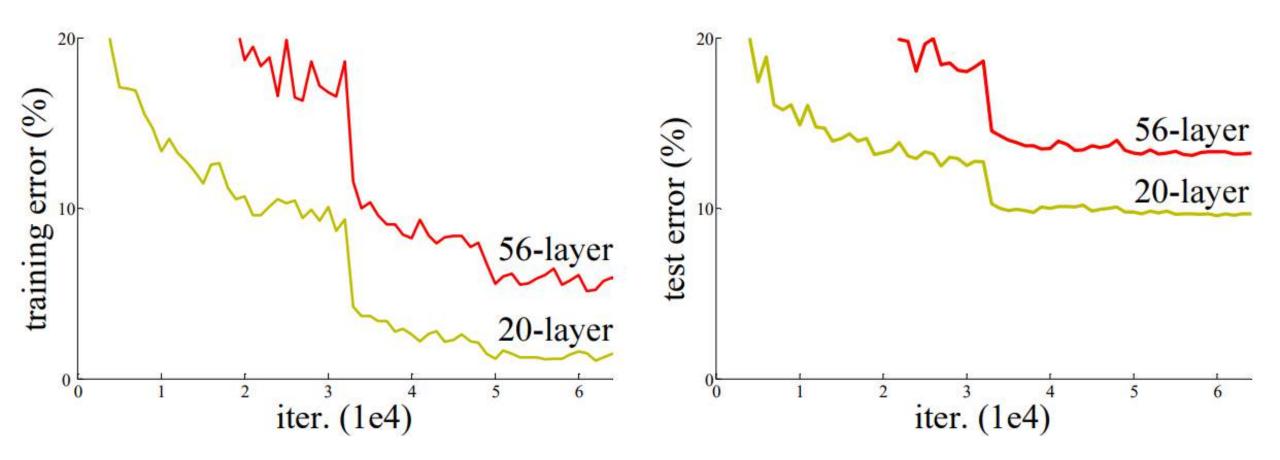
New: Inception Module

73

A



ResNet for Image Classification

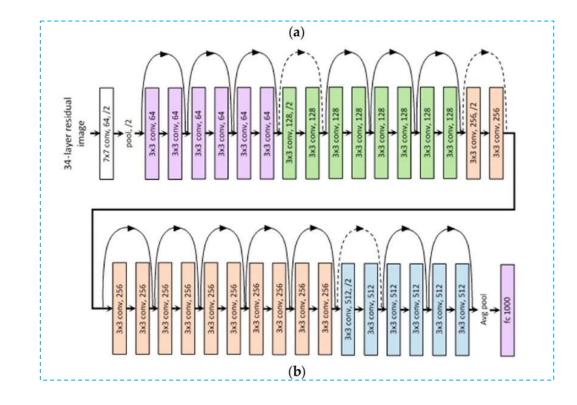


The Residual Blocks idea was created by this design to address the issue of the vanishing/exploding gradient

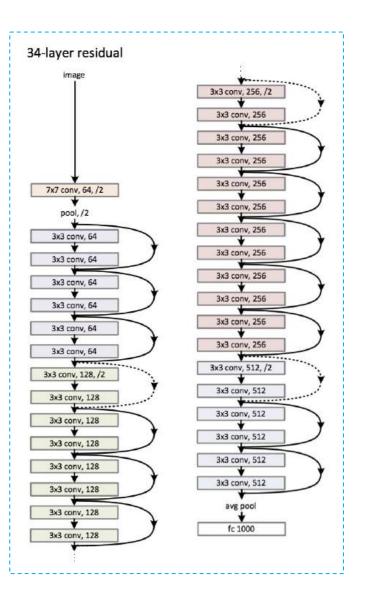
74

AI VIET NAM

ResNet for Image Classification



A novel architecture called **Residual Network** was launched by Microsoft Research experts in 2015 with the proposal of **ResNet**.



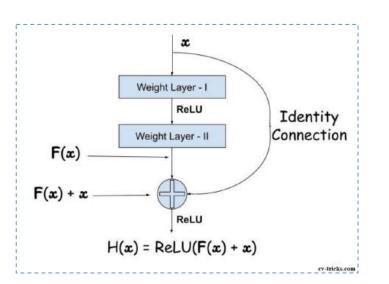
75

AI VIET NAM

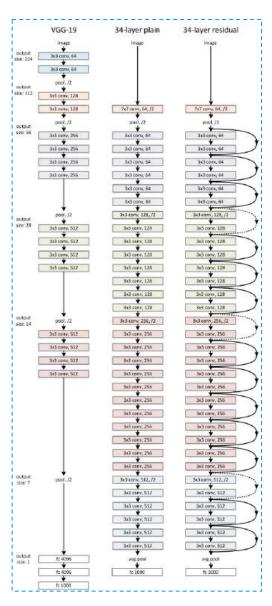
76

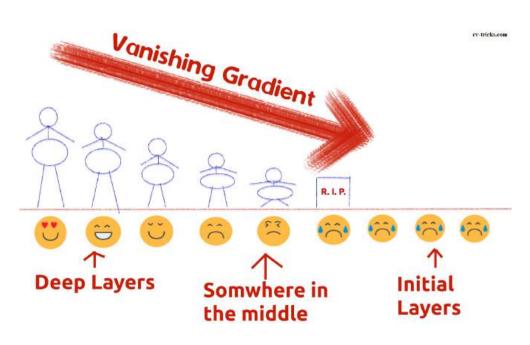
ResNet34 for Image Classification

New: Skip Connection



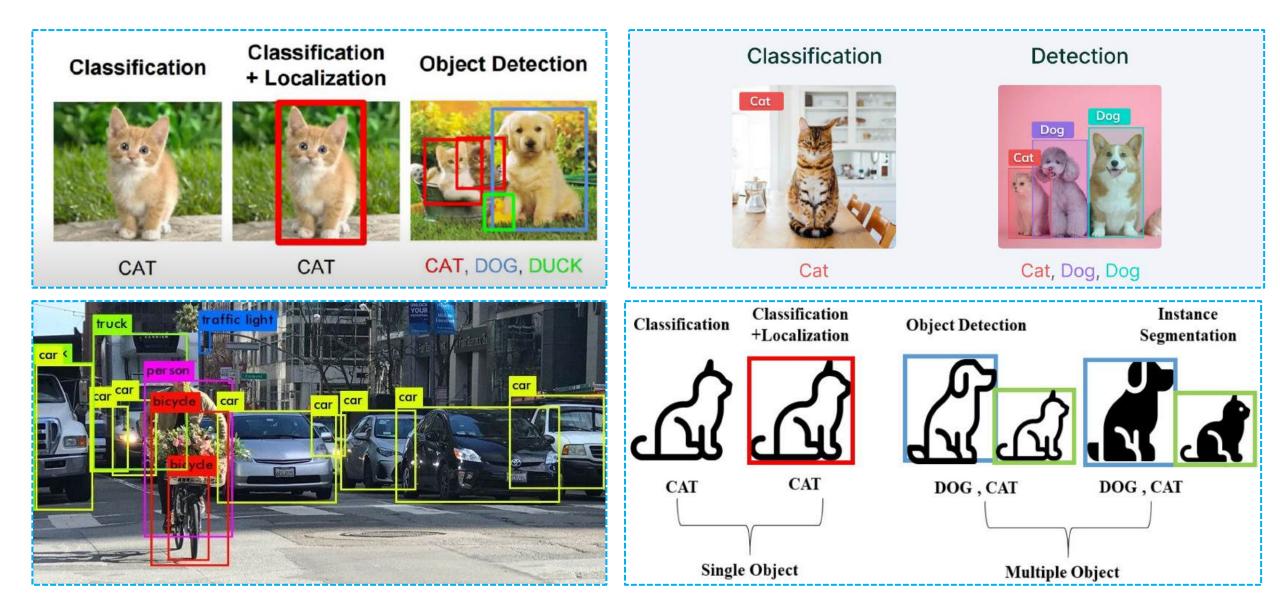
The intuition is that learning f(x) = 0 has to be easy for the network.





The VGG-19-inspired 34-layer plain network architecture used by ResNet is followed by the addition of the shortcut connection

AI VIET NAM (aivietnam.edu.vn Image Classification vs. Object Detection



Outline

Introduction to Object Detection

Applications of Object Detection

Object Detection Milestones

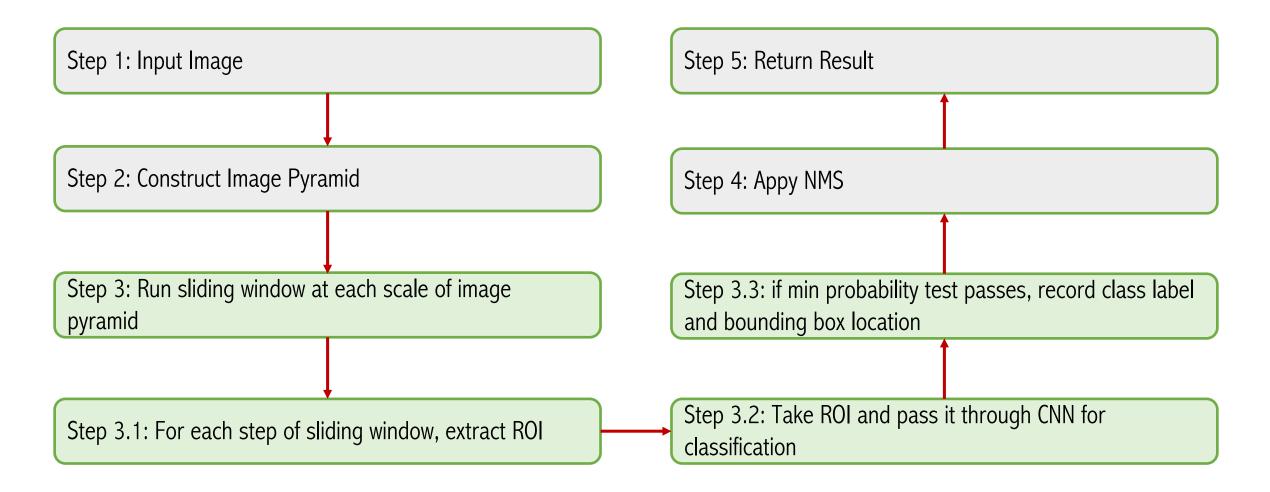
Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

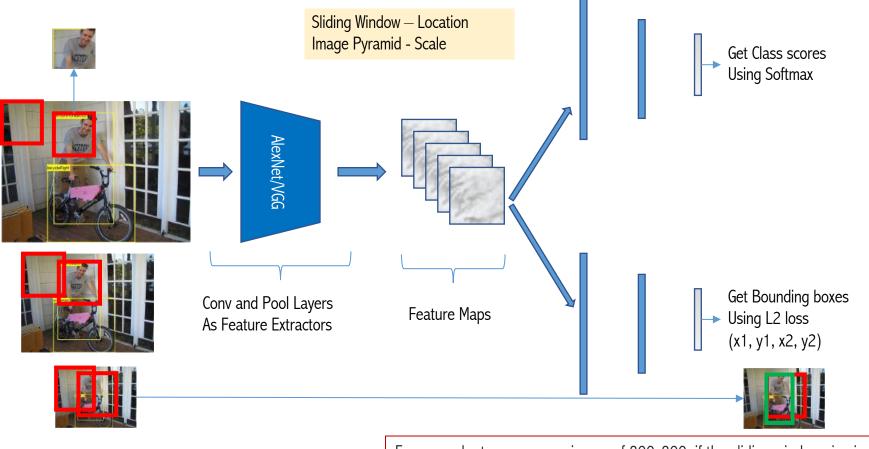
AI VIET NAM Classification To Object Detection



Code: https://colab.research.google.com/drive/lEtxlG4XRgrsOF7N8ivHQ6JZvVRboQx-8?usp=sharing

Ideas for Detection using CNN

Crop + Resize with Sliding Window + Image Pyramid



For example, to process an image of 800x800, if the sliding window size is 224, we will end up with 331,776 crops.

AI VIET NAM

@aivietnam.edu.vn

Ideas for Detection using CNN

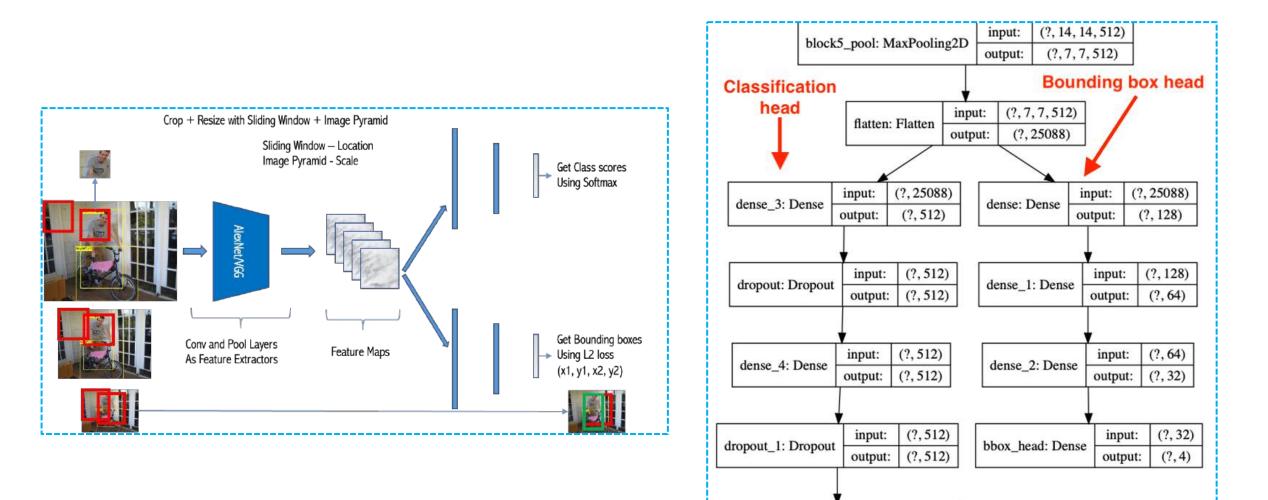
(?, 512)

(?,2)

input:

output:

softmax_head: Dense



81

AI VIET NAM

Outline

Introduction to Object Detection

Applications of Object Detection

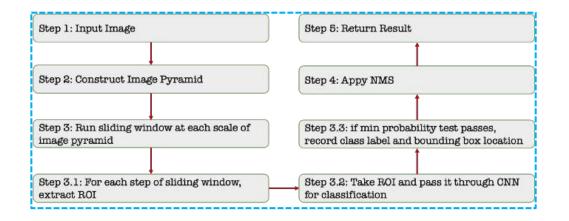
Object Detection Milestones

Traditional Object Detectors

CNNs for Image Classification

Image Classifier to Object Detectors with CNN

CNN Limitations and Spatial Outputs

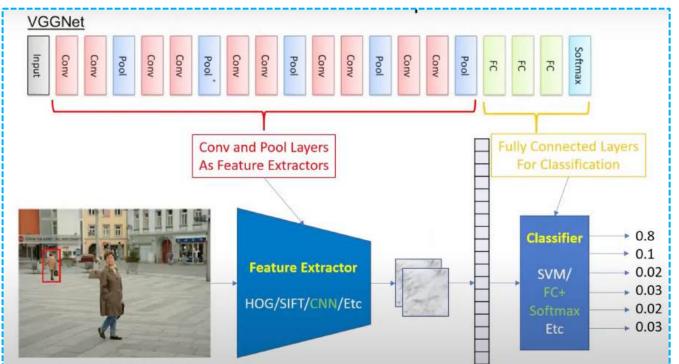


AI VIET NAM

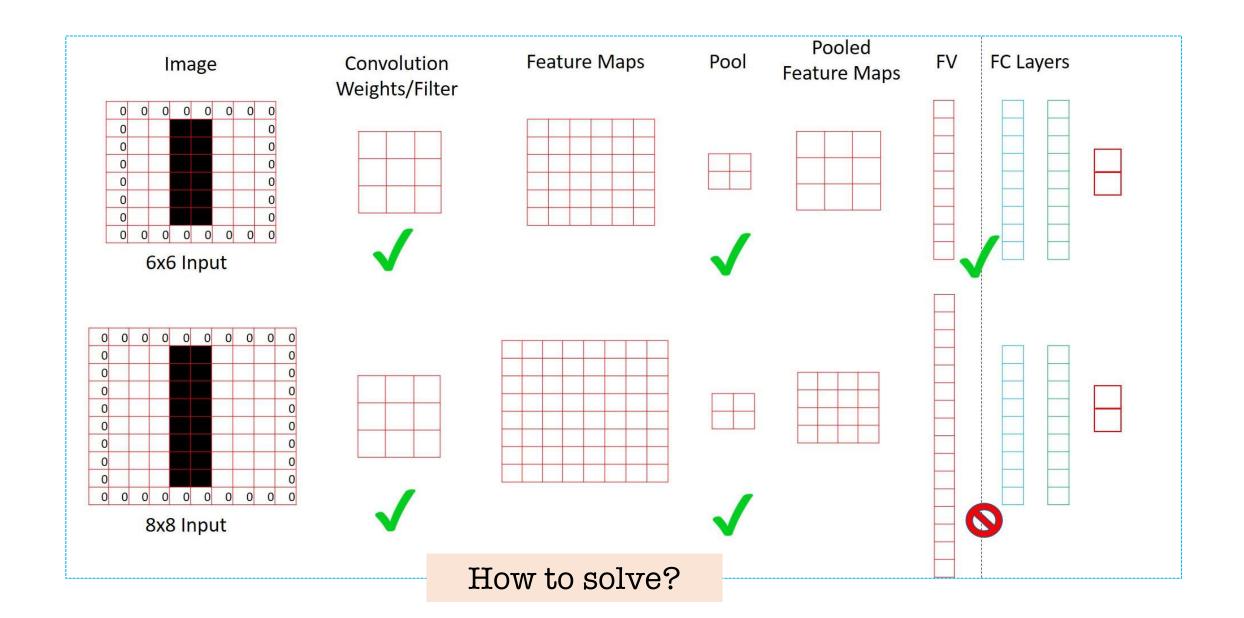
@aivietnam.edu.vn

83

A



Problems: CNN Input Size Constraints



AI VIET NAM

@aivietnam.edu.vn

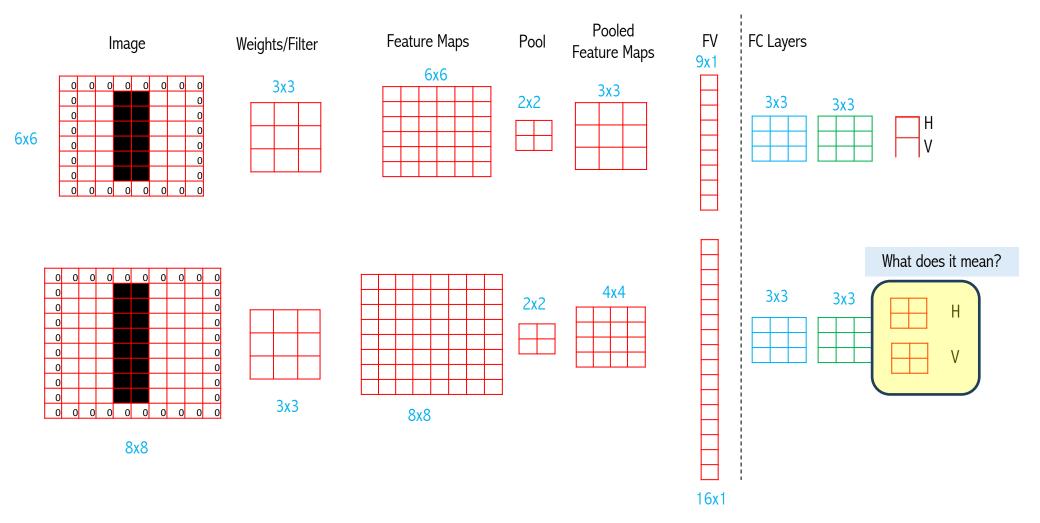
ConvNets input size constraints

***** FC as Conv

85

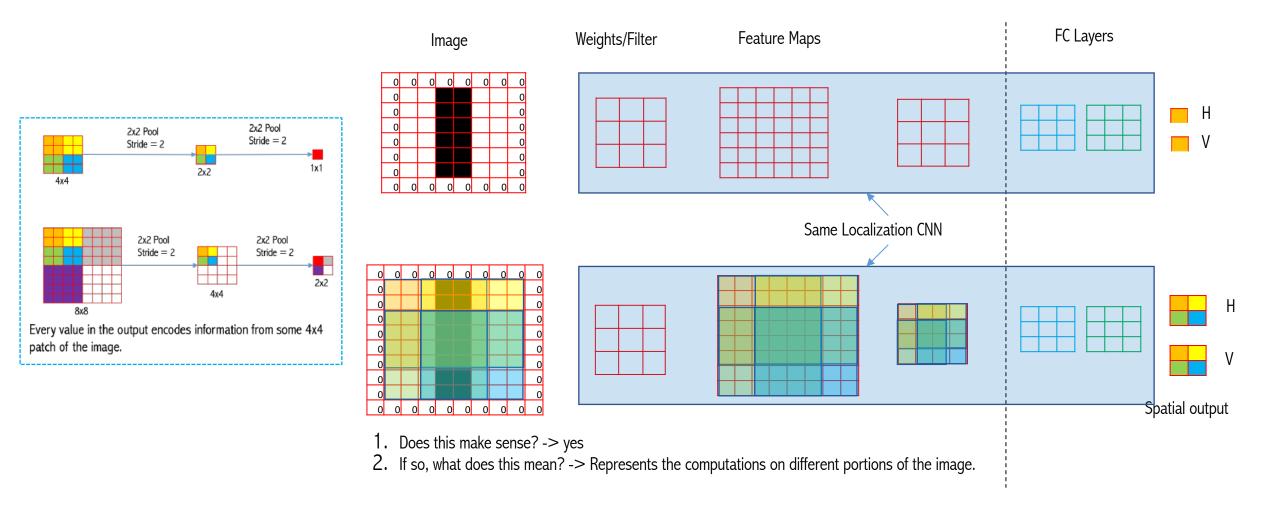
A

AI VIET NAM



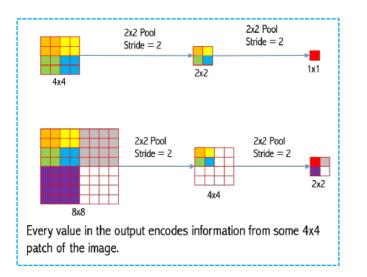
ConvNets input size constraints

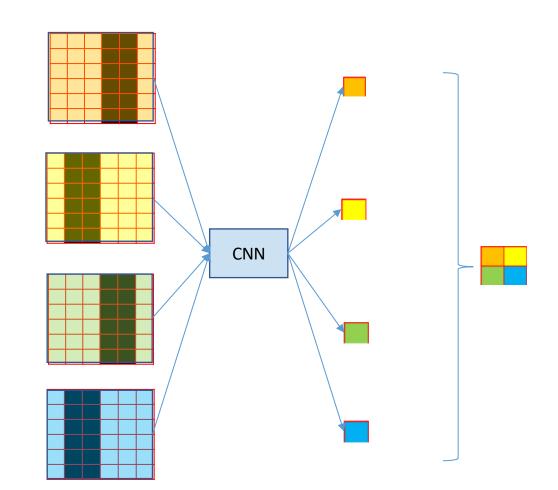
***** FC as Conv



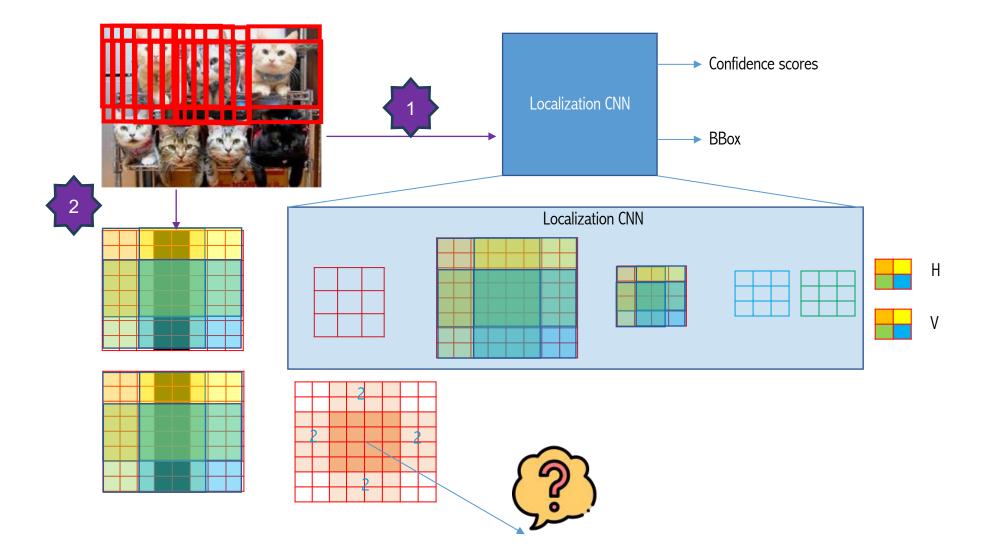
ConvNets input size constraints

***** FC as Conv





ConvNets and Sliding Window Efficiency



88

A

ConvNets and Sliding Window Efficiency

		_																		
			0	0	255	255	0	0	255	255										
			0	0	255	255	0	0	255	255				-765	-765	765	765	-765	-765	
			0	0	255	255	0	0	255	255				-765	-765	765	765	-765	-765	
			0	0	255	255	0	0	255	255			1 0 -1	-765	-765	765	765	-765	-765	
			0	0	255	255	0			255			1 0 -1	-765	-765	765	765	-765	-765	
			0			255				255			1 0 -1	-765	-765	765	765	-765		
			0			255				255			3x3	-765		765	765		-765	
			0			255				255						6	(6			
		L					x8									0/	0			
						•														
		Г	0	0	255	255	0	0	255	255	0	0								
		-	0		255		-	-		255	0	-								
			0	0	255	255	0	0	255	255	0	0		-765	-765	765	765	-765	-765	765
			0	0	255	255	0	0	255	255	0	0		-765	-765	765	765	-765	-765	765
			0	0	255	255	0	0	255	255	0	0		-765	-765	765	765	-765	-765	765
			0	0	255	255	0	0	255	255	0	0	1 0 -1	-765	-765	765	765	-765	-765	765
		Γ	0	0	255	255	0	0	255	255	0	0	1 0 -1	-765	-765	765	765	-765	-765	765
			0	0	255	255	0	0	255	255	0	0	1 0 -1	-765	-765	765	765	-765	-765	765
			0	0	255	255	0	0	255	255	0	0	3x3	-765	-765	765	765	-765	-765	765
			0		255		0	0	255	255	0	0		-765	-765	765	765	-765		765
		- F																		

0

8x8

765 -765 -765

765 -765 -765 765

765 -765 -765 765

765 -765 -765 765

765 -765 -765 765

6x6

765 -765 -765 765 765

765

765

765

765

765

765

765

765

765

765

765

765

765 765

765

	1	0x1	0							
255	255	0	0	255	255	0	0			
255	255	0	0	255	255	0	0			
255	255	0	0	255	255	0	0	1	0	-1
255	255	0	0	255	255	0	0	1	0	-1
255	255	0	0	255	255	0	0	1	0	-1
255	255	0	0	255	255	0	0	-	3x3	,
255	255	0	0	255	255	0	0		283)
255	255	0	0	255	255	0	0			

0

AI VIET NAM

@aivietnam.edu.vn

89

A

8x8

0 255 255 0 0 255 255 0

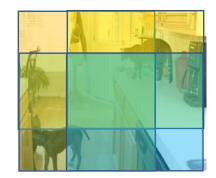
Spatial Ouput for Image Pyramids

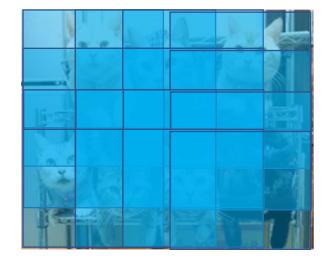
AI VIET NAM

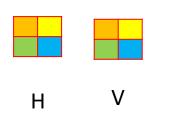
@aivietnam.edu.vn

90

A







Н

V

Spatial Outputs: Summary

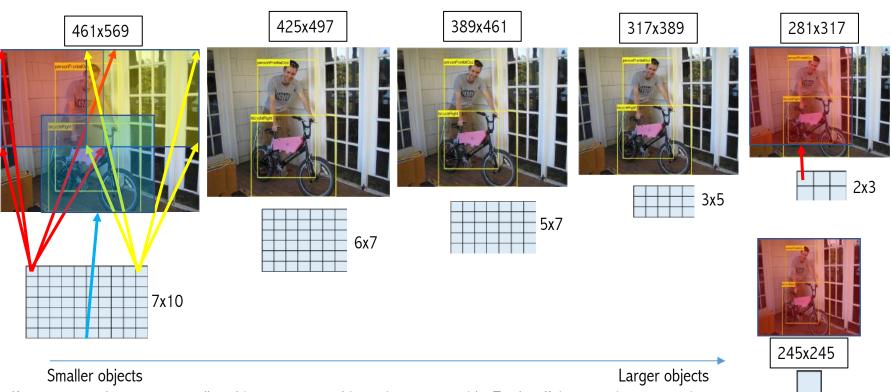
With Spatial Outputs, we can detect different objects at different locations of the image. Below figure shows a 2x3 Spatial Output for a sample image.

Resolution = 36

OverFeat

Integrated Recognition, Localization and Detection using Convolutional Networks

Sliding Window Crop-FC as Conv (No input size constraint) + Spatial Output + Image Pyramid

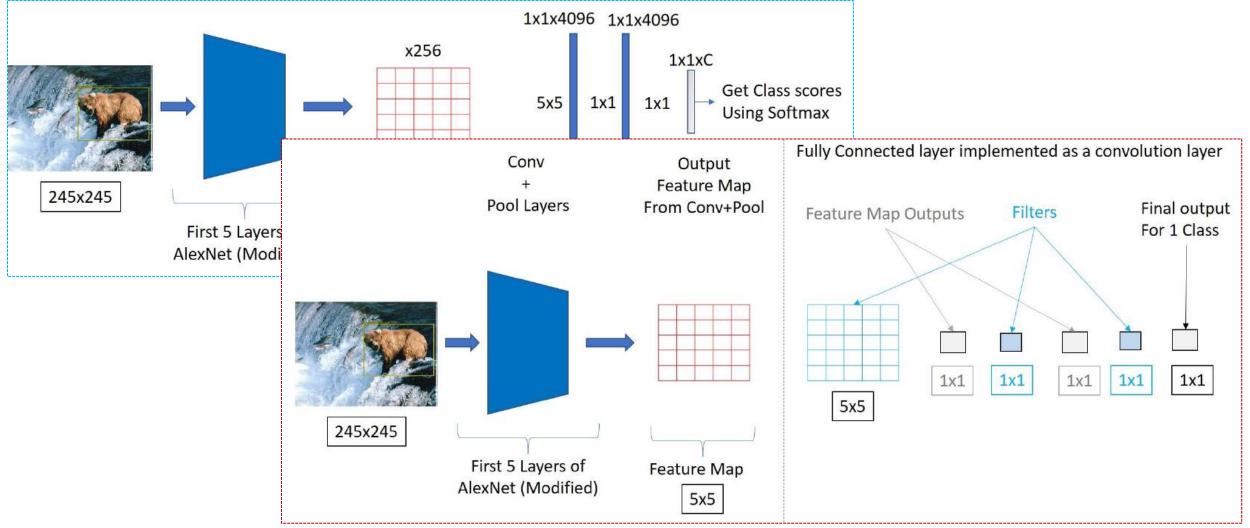


How to modify localization framework to convert FC as Conv?

If you want to detect even smaller objects, use even bigger image pyramids. Trade-off, increase in computation

- . Use the same localization network, without using the Sliding Window crops at different locations.
- 2. No input size constraint, be able to use the Image pyramids.
- 3. Use Image Pyramids, we will get the Spatial Output, which will give us detections at different locations of the image.
- 4. The entire network is using Convolution operations, it is way more efficient than taking crops.

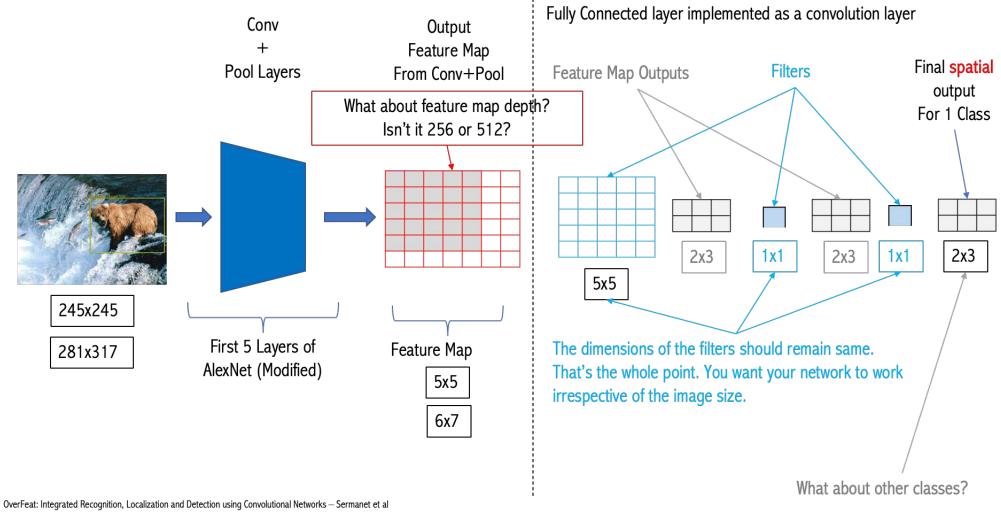
OverFeat Classification



AI VIET NAM

@aivietnam.edu.vn

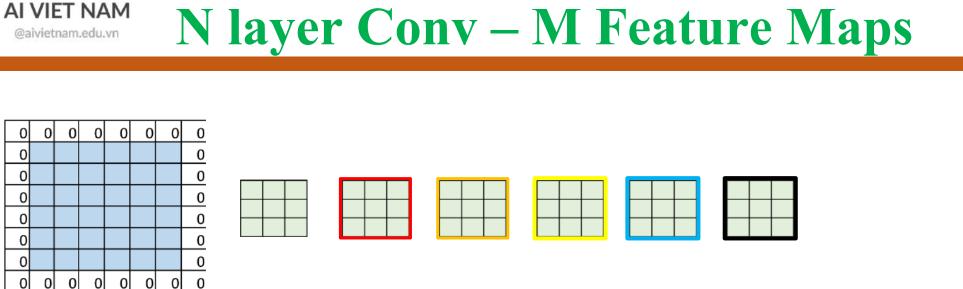
Overfeat Classification

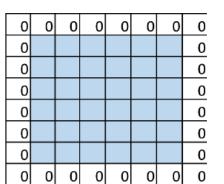


Images Credit - Overfeat paper & https://towardsdatascience.com/object-localization-in-overfeat-5bb2f7328b62

AI VIET NAM

@aivietnam.edu.vn





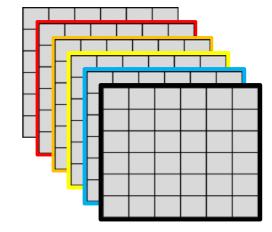
0

0

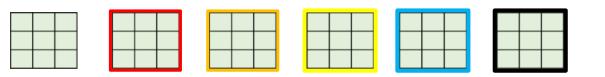
ol

ol 0 ol

ol

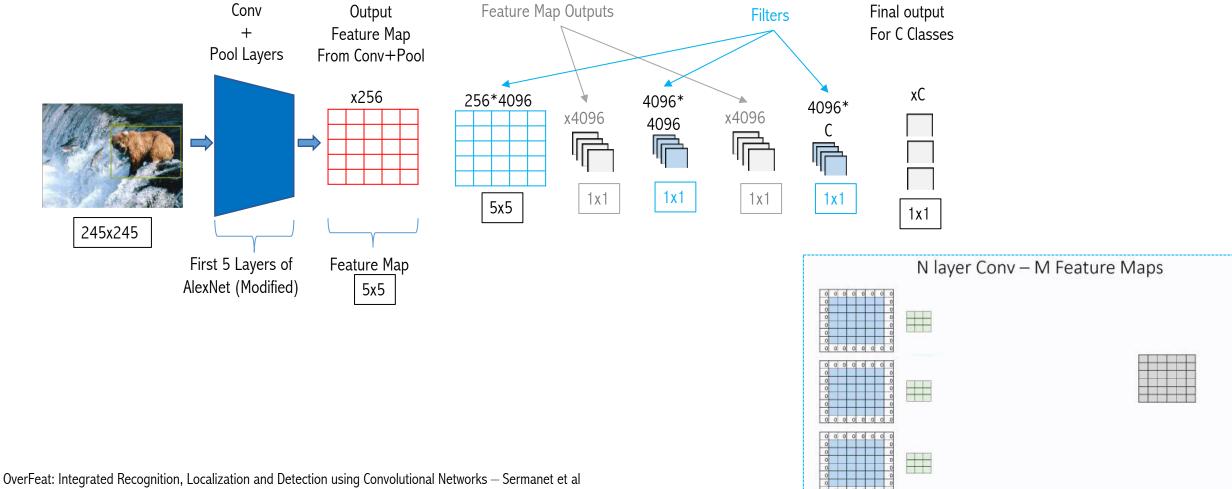


0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0



A

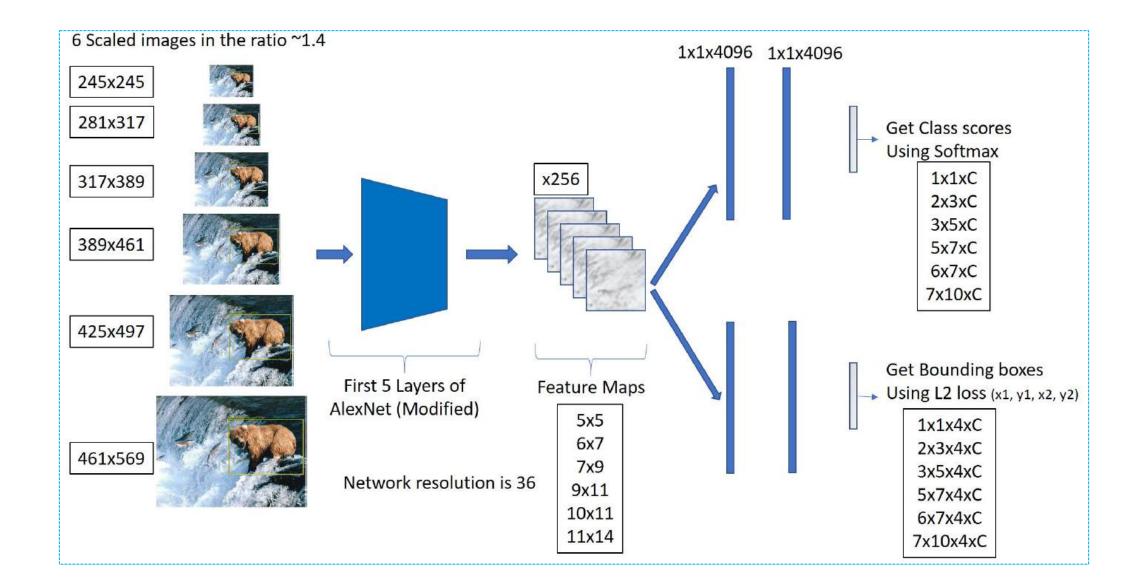
Fully Connected layer implemented as a convolution layer



AI VIET NAM

@aivietnam.edu.vn

Overfeat Classification



AI VIET NAM

