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The objective of object detection is to develop computational models and techniques that
provide one of the most basic pieces of information needed by computer vision
applications:

What objects are where?

What is an Object Detection?
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Retail Industrial Use Cases

Transportation Autonomous Vehicle

…

Medical

Object Detection for Businesses
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Shaoxi Li et al. “Survey on
Deep Learning-Based
Marine Object Detection”,
2021

Object Detection Milestones
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Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi:
10.1109/JPROC.2023.3238524.

Object Detection Milestones



9

Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

Object Detection Milestones



10

Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.
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Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

The training of a detector is essentially an imbalanced learning problem. In the case of sliding window based detectors, the imbalance between backgrounds and objects could be as 
extreme as 107 :1

Object Detection Milestones
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Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

Object Detection Milestones
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arXiv:2306.04670 [cs.CV]

Object Detection: Transformer

https://arxiv.org/abs/2306.04670
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No. Authors Detector Type Input image Published in URL link
1 Li et al. (2017) YOLOv3-DarkNet53 Anchor-based 320*320 arXiv 2018 https://github.com/westerndigitalcorporation/YOLOv3-in-PyTorch
2 Howard et al. (2017) MobileNet-SSD Anchor-based 300*300 arXiv 2017 https://github.com/chuanqi305/MobileNet-SSD
3 Sandler et al. (2018) MobileNetv2-SSDLite Anchor-based 320*320 CVPR 2018 https://github.com/tranleanh/mobilenets-ssd-pytorch
4 Li et al. (2018) Tiny-DSOD Anchor-based 300*300 arXiv 2018 https://github.com/lyxok1/Tiny-DSOD
5 Wang et al. (2018) Pelee Anchor-based 304*304 NeurIPS 2018 https://github.com/Robert-JunWang/Pelee
6 Qin et al. (2019), Huang et al. (2018) YOLO-LITE Anchor-based 416*416 ICBD 2018 https://github.com/reu2018DL/YOLO-LITE
7 Qin et al. (2019) ThunderNet Anchor-based 320*320 ICCV 2019 https://github.com/DayBreak-u/Thundernet_Pytorch

8 Tan et al. (2019) MnasNet-A1 + SSDLite Anchor-based 320*320 CVPR 2019 https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet

9 Tang et al. (2020a, 2020b) LightDet Anchor-based 320*320 ICASSP 2020 Not available
10 Yi et al. (2019) YOLOV3-Tiny Anchor-based 416*416 ICACCS 2020 https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg
11 Long et al. (2020a, 2020b) PP-YOLO Anchor-based 608*608 CVPR 2020 https://github.com/PaddlePaddle/PaddleDetection

12 Long et al. (2020a, 2020b) YOLOv4-Tiny Anchor-based 416*416 arXiv 2020 https://github.com/truong2710-cyber/Mask-Detection-YOLOv4-tiny-
Kaggle-Dataset

13 Tan et al. (2020) EfficientDet Anchor-based 512*512 CVPR 2020 https://github.com/xuannianz/EfficientDet
14 Huang et al. (2021) PP-YOLOv2 Anchor-based 640*640 arXiv 2021 https://github.com/PaddlePaddle/PaddleDetection
15 Ge et al. (2021) YOLOX-Nano Anchor-free 416*416 ICSP 2022 https://github.com/Megvii-BaseDetection/YOLOX

16 Ge et al. (2021) YOLOX-Tiny Anchor-free 416*416 IJCINI 2022 https://github.com/TexasInstruments/edgeai-
yolox/blob/main/exps/default/yolox_tiny.py

17 Cai et al. (2021) YOLObile Anchor-based 320*320 AAAI 2021 https://github.com/nightsnack/YOLObile
18 Wang et al. (2021) Scaled YOLOv4 Anchor-based 608*608 CVPR 2021 https://github.com/WongKinYiu/ScaledYOLOv4
19 Wang et al. (2021) Trident YOLO Anchor-based 416*416 Wiley IET Not available
20 Li et al. (2021a, 2021b, 2021c) NanoDet Anchor-free 320*320 Journals of Radar https://github.com/RangiLyu/nanodet
21 Yu et al. (2021) PP-PicoDet Anchor-free 416*416 arXiv 2021 https://github.com/PaddlePaddle/PaddleDetection
22 Ding et al. (2022) Slim YOLOv4 Anchor-free 416*416 JRIP Not available
23 Liu et al. (2022a, 2022b) Mini YOLO Anchor-free 320*320 Wiley Journal Not available
24 Xu et al. (2022) PP-YOLOE-S Anchor-free 640*640 arXiv 2022 https://github.com/PaddlePaddle/PaddleDetection
25 Wang et al. (2022a, 2022b, 2022c, 2022d) YOLOv7-X Anchor-free 640*640 arXiv 2022 https://github.com/WongKinYiu/yolov7
26 Li et al. (2022a, 2022b) L-DETR Anchor-free 800*1333 IEEE Access https://github.com/wangjian123799/L-DETR.git

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev 57, 242 (2024). 
https://doi.org/10.1007/s10462-024-10877-1
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16 Lightweight object detection models
No. Detector Backbone Loss function AP Proposal
1 YOLOv3-DarkNet53 DarkNet53 Logistic regression 38.1 Network structure makes greater use of the GPU, making it faster to evaluate than Darknet-19

2 MobileNet-SSD MobileNet Smooth L1 loss 19.3 Lightweight deep network is constructed using depth-wise separable convolutions

3 MobileNetv2-SSDLite MobileNetv2 Smooth L1 loss 22.1 With fewer parameters and less computational complexity, gets competitive accuracy
4 Tiny-DSOD DDB-Net Smooth L1 loss 23.2 For resource-constrained uses based on DDB and D-FPN blocks
5 Pelee PeleeNet Smooth L1 loss 22.4 Variant of DenseNet, built with conventional convolution
6 YOLO-LITE Darknet-53 L1 loss 12.2 A real-time detection model developed to run on portable devices lacking a GPU
7 ThunderNet SNet535 Sigmoid 28.1 Embedded context enhancement and spatial attention module
8 MnasNet-A1 + SSDLite MnasNet-A1 Smooth L1 loss 23.0 Directly measures real-world inference latency by executing the model on edge devices
9 LightDet Modified ShuffleV2 Smooth L1 loss 24.0 Introduce an efficient feature-preserving and refinement module
10 YOLOv3-Tiny Reduced Darknet-53 Logistic regression 16.6 Lightweight model of YOLOv3, which takes reduced training time
11 PP-YOLO MobileNetV3 IoU aware loss 45.9 Balanced efficiency, directly applied in real application scenarios
12 YOLOv4-Tiny CSP-ResNet CIoU loss 28.7 Reduced parameters, makes it suitable for edge devices
13 EfficientDet EfficientNet Focal loss 34.6 Proposed a weighted bi-directional FPN for feature fusion
14 PP-YOLOv2 ResNet101 IoU aware loss 49.5 Increasing the input size and follow the design of PAN to aggregate the top-down information
15 YOLOX-Nano DarkNet53 GIoU loss 25.8 Dynamic label assignment strategy SimOTA
16 YOLOX-Tiny CBAM GIoU loss 32.8 Fuses convolutional attention and mixup data enhancement strategy
17 YOLObile CSP-DarkNet53 GIoU loss 31.6 Offers mobile acceleration and block-punched pruning with a mobile GPU-CPU collaborative strategy

18 Scaled YOLOv4 CSPNet-15 CIoU loss 28.7 Propose a network scaling approach that modifies the width, and resolution of network
19 TridentYOLO CSP-RFBs Focal loss 40.3 Propose a trident feature pyramid network
20 NanoDet ShuffleNetV2 Focal loss 20.6 Based on visual saliency and perform feature learning on samples added with saliency maps
21 PP-PicoDet Enhanced ShuffleNet GIoU Loss 30.6 Improved detection One-Shot NAS pipeline
22 Slim YOLOv4 MobileNetV2 CIoU loss 29.2 Efficient network computing methods for convolution
23 MiniYOLO DSLightNet CIoU 21.4 Adopted depthwise separable convolution
24 PP-YOLOE-S ResNet50-vd IoU aware loss 43.1 Scalable backbone-neck architecture, and refined loss function
25 YOLOv7-X RepCSPResNet Assistant loss 53.1 Propose the trainable bag-of-freebies method to enhance accuracy
26 L-DETR PP-LCNet H-sigmoid function – Embedded group normalization

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev 57, 242 (2024). 
https://doi.org/10.1007/s10462-024-10877-1



17 Lightweight object detection models
No. Light-weight object detector Backbone FLOPs Inference time (ms) FPS Parameters (M) Real-time applications

1 YOLOv3-DarkNet53 DarkNet53 1453B 22 171 – ✅

2 MobileNet-SSD MobileNet 1.2G – 59.3 4.31 *

3 MobileNetv2-SSDLite MobileNetv2 0.8G – – 3.38 *

4 Tiny-DSOD DDB-Net 1.12G – 105 0.95 *

5 Pelee PeleeNet 1.21B – 205 5.98 *
6 YOLO-LITE Darknet-53 0.48G – 21 – *

7 ThunderNet SNet535 0.47 – 248 – ✅

8 MnasNet-A1 + SSDLite MnasNet-A1 0.8B 203 – 4.9 *

9 LightDet Modified ShuffleV2 0.50G – 250 – ✅

10 YOLOv3-Tiny Reduced Darknet-53 5.56 B 4.5 368 8.86 *

11 PP-YOLO MobileNetV3 1.02G 10.48 73 1.08 ✅

12 YOLOv4-Tiny CSP-ResNet – – 371 6.06 ✅

13 EfficientDet EfficientNet 2.5B 10.20 98 3.9 ✅

14 PP-YOLOv2 ResNet101 0.115G 14.50 68.9 1.08 ✅

15 YOLOX-Nano DarkNet53 1.08G 19.23 90.1 0.91 ✅

16 YOLOX-Tiny CBAM 6.48G 32.77 – 5.06 ✅

17 YOLObile CSP-DarkNet53 3.95G – 17 4.59 ✅

18 Scaled YOLOv4 CSPNet-15 6.3B – 62 53 ✅

19 TridentYOLO CSP-RFBs 5.19B – 29.3 – ✅

20 NanoDet ShuffleNetV2 1.2G 13.35 – 0.95 *

21 PP-PicoDet Enhanced ShuffleNet 0.73G 8.13 – 0.99 ✅

22 Slim YOLOv4 MobileNetV2 – – 60.19 – ✅

23 MiniYOLO DSLightNet – – – 2.06 *
24 PP-YOLOE-S ResNet50-vd 110.7G 12.8 208.3 52.20 ✅

25 YOLOv7-X RepCSPResNet 189.9G – 114 71.3 ✅

26 L-DETR PP-LCNet – – – – ✅

Mittal, P. A comprehensive survey of deep learning-based lightweight object detection models for edge devices. Artif Intell Rev 57, 242 (2024). 
https://doi.org/10.1007/s10462-024-10877-1
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arXiv:2306.04670 [cs.CV]

An overview of the Detection Transformer
(DETR) and its modifications proposed by
recent methods to improve performance
and training convergence.

Object Detection: Transformer

https://arxiv.org/abs/2306.04670
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Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in
20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no.
3, pp. 257-276, March 2023, doi:
10.1109/JPROC.2023.3238524.

Well-known Object Detection Datasets



20 Traditional Vs. Deep Learning
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Milestones: Traditional Detectors
Viola Jones Detectors, SVM + HOG & DPM

Milestones: CNN based Two-stage Detectors
RCNN, SPPNet, Fast RCNN, Faster RCNN,.. 

Milestones: CNN based One-stage Detectors
YOLO, SSD, RetinaNet, CornerNet, Center Net,..

Milestones: Transformer for OD
DETR, D-DETR, DINO,…

Object Detection Milestones
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Z. Zou, K. Chen, Z. Shi, Y. Guo and J. Ye, "Object Detection in 20 Years: A Survey," in Proceedings of the IEEE, vol. 111, no. 3, pp. 257-276, March 2023, doi: 10.1109/JPROC.2023.3238524.

Object Detection Milestones
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Traditional Object Detectors

Object Detection Milestones
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CNN Limitations and Spatial Outputs
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Slides windows of differents sizes across image. 
At each location match window to face model

Feature

Extract
Feature

Match Face 
Model

Features: 
How to extract feature?
Which features represent face well?

Classifier:
How to build a model and classify features as face or not?

Traditional Detectors
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Interest Point (Edge, Corners, SIFT,..)

Facial Components (Templates)?

≠
Discriminative Face / None Face

• Extreme Fast to Compute
• Millions of windows in an image 

The key aspect in face recognition is detecting relevant
features in human face like eyes, eyebrows, nose, lips. So
how do we detect these features in real time/in an image
?

What are good features?
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Knowledge Based
•Rule based (Ex: X must have eyes, x must have a nose)
•Too many rules and variables with this method

Feature Based
Locate and extract structural features in the face
Find a differential between facial and non facial regions in an image

Appearance Based
Learn the characteristics of a face. Example: CNN’s
Accuracy depends on training data (which can be scarce)

Template
Using predefined templates for edge detection. Quick and easy
A trade off for speed over accuracy

Methods for Face Detection
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The key aspect in face recognition is detecting relevant features in
human face like eyes, eyebrows, nose, lips. So how do we detect these
features in real time/in an image ?

The answer is Haar Wavelets or Haar Features

The algorithm used is called as Viola-Jones Algorithm



28 Viola Jones Detectors : Haar Feature
Although there are thousands of possible feature shapes that can be created, the two most common are

Edge Features and Line Features.

Detect part of a face, eyebrow, naturally the
shade of the pixels of on an eyebrow in an image
will be darker and abruptly gets lighter (skin).

Edge Features

Detect a mouth: naturally the shape of the lips
region on your face go from light to dark to light
again. For this, Line features prove to be the best.
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P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 
Kauai, HI, USA, 2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.

Viola-Jones uses 24*24 as base window size and calculates the above features all over the image shifting by 1 PX (Template + Feature).
There are over 160,000 possible feature combinations that can fit into a 24x24 pixel image, and over 250,000 for a 28x28 image

Running on a 700MHz Pentium III CPU, the detector was tens or even hundreds of times faster than other algorithms in its time under comparable detection accuracy

Viola Jones Detectors : Haar Feature



30 Viola Jones Detectors : Haar Feature

Not face Not face Not face Not face

1 2 3 4

1 2 3 4



31 Viola Jones Detectors : Haar Feature

Not face Not face Not face Face

1 2 3 4

1 2 3 4
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https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08

White region Dark region

Viola Jones Detectors : Haar Feature

Summing up pixel values for all feature types in all images in your
dataset can be very computationally expensive, especially
depending on the resolution of your images.



33 Viola Jones Detectors : Integral Image

Each point in the integral image is a sum of the pixels above and left of the corresponding pixel in the
source image
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•The value of the integral image at point 1 is the sum of the pixels in rectangle A
•The value at point 2 is A + B
•The value at point 3 is A + C
•The value at point 4 is A + B + C + D.
•Therefore, the sum of pixels in region D can simply be computed as : 4+1−(2+3).

Raster Scanning

Viola Jones Detectors : Integral Image



35 Viola Jones Detectors : Integral Image

https://medium.com/@aaronward6210/facial-detection-understanding-
viola-jones-algorithm-116d1a9db218
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The trick is to compute an “integral image.”  Every 
pixel is the sum of its neighbors to the upper left.

Sequentially compute using:

Viola Jones Detectors : Integral Image
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⨂ =

Haar Filters Haar Features

Viola Jones Detectors : Harr Feature
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Compute Haar Features at different scales to detect faces of different sizes

As stated previously there can be approximately 160,000 + feature values within
a detector at 24*24 base resolution which need to be calculated. But it is to be
understood that only a few set of features will be useful among all these features
to identify a face.

Can we create a good classifier using just a small subset of all possible
features?

Feature detecting a vertical edge is useful detecting a nose but irrelevant 
detecting a lip.

Haar Features for Multiple Scales
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1 2

3

4
Influence

AdaBoost: FOREST OF STUMP



40

The goal of using the AdaBoost algorithm is to extract the best features from n features

Adaboost for Face Detection

0176



41

Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error

θt is a threshold for classifier ht

AdaBoost for Feature+Classifier Selection



42

Find the best threshold and polarity for each 
feature, and return error.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

{x1,…xn}

For T rounds:

42

NOTE: Our code 
uses equal weights
for all samples

sum over training samples

meaning we will 
construct T weak 
classifiers

Normalize weightsAdaBoost Algorithm 
modified by Viola 
Jones
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This feature combination can yield 100% detection rate and 50% false positive rate

A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084The AdaBoost algorithm for classifier learning. Each round t of 
boosting selects one feature from the 180,000 potential feature

AdaBoost for Feature+Classifier Selection
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In an image, most of the image is a non-face region

The key idea is to reject sub-windows that do not contain faces while identifying
regions that do. Since the task is to identify properly the face, we want to minimize the
false negative rate, i.e the sub-windows that contain a face and have not been
identified as such.

A series of classifiers are applied to every sub-window. These classifiers are simple
decision trees :
•if the first classifier is positive, we move on to the second
•if the second classifier is positive, we move on to the third.
•Any negative result at some point leads to a rejection of the sub-window as
potentially containing a face

The Cascade Classifier



45 The Cascade Classifier

https://towardsdatascience.com/face-detection-with-haar-cascade-727f68dafd08



46 Summary

Integral Image

Haar Feature

AdaBoost

Input Image

Output
Cascade Classifier



47 SVM and HOG for Object Detection



48 SVM and HOG for Object Detection
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0 1 2 3 4 5 6 x

1
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Yes No

𝑤"X+ b = 0

𝑤"X+ b = 1

𝑤"X+ b = -1

Max 
!
" "

such that Y * (𝑤#X+ b) ≥ 1

Support Vector

min 
$
!
W !

!+ C ∑%& 𝜀% such that Y * (𝑤#X+ b) ≥ 1- 𝜀%

Allow for miss classification

𝜀! is a distance measure of the data points from their corresponding blue line.

𝜀" > 1

𝑑 = $
%!&'!

=	 $
( !

Slack variable in SVM

miss-classification

𝜀# = 0
𝜀$ < 1

𝑑=	 ,#
( !

C controls how much weight should set on the misclassification data

Support Vector Machine
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50

An image gradient is a directional change in the intensity or color in an image. The gradient of the image
is one of the fundamental building blocks in image processing. For example, the Canny edge detector uses
image gradient for edge detection.

Histogram of Oriented Gradient
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An image gradient is a directional change in the intensity or color in an image. The gradient of the image
is one of the fundamental building blocks in image processing. For example, the Canny edge detector uses
image gradient for edge detection.

Histogram of Oriented Gradient
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In the case of the HOG feature descriptor,  the input image is of size 64 x 128 x 3 = 24576 and  the output feature vector is of length 3780

Step 1: preprocessing and compute gradient 

Histogram of Oriented Gradient
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Step 2: Calculate Histogram of Gradients in 8×8 cells

64x128

8x8

Histogram of Oriented Gradient
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Step 3: Compute Histogram of Oriented Gradient

Histogram of Oriented Gradient
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Step 4: 16×16 Block Normalization
Gradients for highlighted Bock (having 36 features):
V = [a1, a2, a3, .., a36] 

Root of the sum of squares:

𝑘 = 𝑎#$ + 𝑎$$ + 𝑎%$+…+ 𝑎%&$

Normalized vector = 
'!
(
, '"
(
, '#
(
, … , '#$

(

Normalized vectors created for all 105 blocks, having 36 features 
each image Feature Descriptor: 1 x 3780 matrix

Histogram of Oriented Gradient
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Image pyramids

Sliding Window

Advanced techniques:

non-maxima suppression

SVM + HOG
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Image pyramids

Smaller objects Larger objectsSliding Window – Location
Image Pyramid - Scale

SVM + HOG
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Non-maxima suppression

SVM + HOG
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Non-maxima suppression

Hard NMS Soft NMS

SVM + HOG
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Non-maxima suppression

Hard NMS

Soft NMS

SVM + HOG
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Most traditional object detection algorithms like Viola–Jones, and Histogram of Oriented Gradients (HOG)are relied on extracting
handcrafted features like edges, corners, gradients from the image and classical machine learning algorithms.

The traditional computer vision approaches were in the
game until 2010.

From 2012, a new era of convolutional neural networks
started when AlexNet (an image classification network)
won the ImageNet Visual Recognition challenge 2012.
The accuracy of 84.7% as compared to the second-best
with an accuracy of 73.8%.

Traditional Detectors: Summary
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https://poloclub.github.io/cnn-explainer/

Convolutional Neural Network

https://poloclub.github.io/cnn-explainer/
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Image Classifier (IF)

Convolutional Neural Network



65

‘Hello World’ in the domain of Convolution Neural Networks

It was introduced by Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner in 1998

handwritten and machine-printed character recognition

LetNet for Image Classification
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New: Overlapping Max Pooling

Max pooling

(2x2)
Stride 2

Overlap 
max- pooling

(2x2)
Stride 1

This overlapping nature of pooling helped
reduce the top-1 error rate by 0.4% and
top-5 error rate by 0.3% respectively when
compared to using non-overlapping pooling
windows of size 2×2 with a stride of 2 that
would give same output dimensions.

AlexNet for Image Classification



67 AlexNet Summary
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By visualizing the convolutional network, ZFNet become the Winner of ILSVLC 2013 in image classification by fine-tuning the AlexNet invented in 2012

ZFNet was invented by Rob Fergus and Matthew D. Zeiler

ZFNet for Image Classification
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The full name of VGG is the Visual Geometry Group, which belongs to the Department of Science
and Engineering of Oxford University.

The original purpose of VGG's research on the depth of convolutional networks is to understand
how the depth of convolutional networks affects the accuracy and accuracy of large-scale image
classification and recognition.

VGGNet for Image Classification



70 VGG16 for Image Classification
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There are a total of 22 layers, It is already a very deep model compared with 
previous AlexNet, ZFNet, and VGGNet

GoogleLetNet for Image Classification
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New: 1×1 convolution is used as a dimension reduction module to reduce the computation

Number of parameters =28x28 (size of the input image)x 5x5(size of filter) x 
192 (channels) x 32(no of filters) 
= 120,422,400 operations

28x28x192

192

28x28x32

32

Conv (5,5)
Same, 32 filters

28x28x192

192

28x28x16

16

Conv (1,1)
Same, 16 filters

28x28x32

32

Conv (5,5)
Same, 32 filters

Number of parameters =28 x 28 x 16  x 192  + 28 x 28 x 32  x 5 x 5 x 16  ~ 
12.4M

5x5 convolution using 1x1 bottleneck convolution5x5 convolution without using 1x1 bottleneck convolution

As the authors said that the idea of the name “Inception” comes from famous internet meme below: WE NEED TO GO DEEPER

GoogleLetNet for Image Classification



73

New: Inception Module

Inception V1 Module Inception V1 Optimizated

GoogleLetNet for Image Classification
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The Residual Blocks idea was created by this design to address the issue of the vanishing/exploding gradient

ResNet for Image Classification
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A novel architecture called Residual Network was launched by Microsoft Research experts in 2015 with the 
proposal of ResNet.

ResNet for Image Classification
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New: Skip Connection

The VGG-19-inspired 34-layer plain network architecture used by ResNet is followed
by the addition of the shortcut connection

The intuition is that learning f(x) = 0 has to be 
easy for the network.

ResNet34 for Image Classification



77 Image Classification vs. Object Detection
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Step 1: Input Image

Step 2: Construct Image Pyramid

Step 3: Run sliding window at each scale of image 
pyramid

Step 3.1: For each step of sliding window, extract ROI
Step 3.2: Take ROI and pass it through CNN for 
classification

Step 3.3: if min probability test passes, record class label 
and bounding box location

Step 4: Appy NMS

Step 5: Return Result

Code: https://colab.research.google.com/drive/1EtxlG4XRgrs0F7N8ivHQ6JZvVRboQx-8?usp=sharing

Image Classification To Object Detection
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AlexNet/VGG

Conv and Pool Layers
As Feature Extractors Feature Maps

Get Class scores
Using Softmax

Crop + Resize with Sliding Window + Image Pyramid

Get Bounding boxes
Using L2 loss
(x1, y1, x2, y2)

Image Credit - http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html

Sliding Window – Location
Image Pyramid - Scale

For example, to process an image of 800x800, if the sliding window size is 224, 
we will end up with 
331,776 crops.

Ideas for Detection using CNN

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/examples/index.html


81 Ideas for Detection using CNN
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How to solve?

Problems: CNN Input Size Constraints



85

v FC as Conv

Feature MapsWeights/Filter FVImage FC Layers

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Pooled
Feature Maps

0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0

H
V

H

V

Pool

What does it mean?

6x6

3x3
6x6

2x2
3x3

9x1

3x3 3x3

8x8

3x3 8x8

2x2
4x4

16x1

3x3 3x3

ConvNets input size constraints
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Feature MapsWeights/FilterImage FC Layers

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0

H

V

H

V

1. Does this make sense? -> yes
2. If so, what does this mean? -> Represents the computations on different portions of the image.

Spatial output

Same Localization CNN

v FC as Conv

ConvNets input size constraints
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CNN

v FC as Conv

ConvNets input size constraints
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Localization CNN

BBox

Confidence scores

H

V

Localization CNN

1

2

2

2

2

2

ConvNets and Sliding Window Efficiency



89 ConvNets and Sliding Window Efficiency
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H V
H V

Spatial Ouput for Image Pyramids
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With Spatial Outputs, we can detect different objects at different locations of the image. Below figure shows a 2x3 Spatial Output for a sample image.

Spatial Outputs: Summary
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Integrated Recognition, Localization and Detection using Convolutional Networks

245x245

281x317317x389389x461425x497461x569

2x3
3x5

5x7
6x7

7x10

Sliding Window Crop FC as Conv (No input size constraint) + Spatial Output + Image Pyramid 

Resolution = 36

Smaller objects Larger objects
If you want to detect even smaller objects, use even bigger image pyramids. Trade-off, increase in computation

How to modify localization framework to convert FC as Conv?

1. Use the same localization network,
without using the Sliding Window crops
at different locations.

2. No input size constraint, be able to use
the Image pyramids.

3. Use Image Pyramids, we will get the
Spatial Output, which will give us
detections at different locations of the
image.

4. The entire network is using Convolution
operations, it is way more efficient than
taking crops.

OverFeat
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OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks – Sermanet et al

OverFeat Classification



94 Overfeat Classification



95 N layer Conv – M Feature Maps
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OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks – Sermanet et al

First 5 Layers of
AlexNet (Modified)

Feature Map

245x245

5x5

Fully Connected layer implemented as a convolution layer

Conv 
+ 

Pool Layers

Output
Feature Map

From Conv+Pool

x256 256*4096
x4096 x4096

xC

1x1 1x11x1 1x1
1x1

Feature Map Outputs Filters Final output
For C Classes

4096*
4096

4096*
C

5x5

Overfeat Classification
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